DaCeML

Scalable Parallel Computing Laboratory, ETH Zurich, and the DaC

1 Installation 3
1.1 Installing ONNXRuntime 3
2 ONNX 5
2.1 Library Nodes 5
2.2 Node Implementations 7
2.3 Importing ONNX models 8
2.4 Schema Representation \& Protobuf conversion 8
3 PyTorch Integration 9
4 Automatic Differentiation 11
4.1 Using Autodiff 11
4.2 Architecture 12
4.3 Extending the Engine 13
5 Development 15
5.1 Specific Package Versions 15
5.2 Makefile Targets 15
5.3 Testing 16
5.4 Useful Snippets 16
6 Examples 17
6.1 Using ONNX Library Nodes 17
6.2 Optimizing the Mish Operator 18
7 daceml.autodiff 23
7.1 Generating Backward Passes 23
7.2 Extending Autodiff 24
8 daceml.onnx 27
8.1 Schema Representation 29
8.2 Op Implementation Registration 33
8.3 SDFG-based ONNX Implementations 34
8.4 Dace CMake Environments 36
8.5 Supported ONNX Operators 36
9 daceml.pytorch 167
10 Indices and tables 171

Python Module Index 173
Index 175

Machine learning powered by data-centric parallel programming.
This project adds PyTorch and ONNX model loading support to DaCe, and supports ONNX operators as library nodes to DaCe stateful dataflow multigraphs.

INSTALLATION

DaCeML can be installed by using pip install git+https://github.com/spcl/daceml. It is recommended to install the desired version of PyTorch first.

Alternatively, clone the repository and install using:

```
VENV_PATH='' make install
```

See Development for more details on the Makefile.

1.1 Installing ONNXRuntime

DaCeML executes ONNX operators using ONNXRuntime by default. To enable this, a patched version ${ }^{1}$ of ONNXRuntime needs to be installed and setup.

ONNXRuntime can be installed from source or from a prebuilt release.

1.1.1 Prebuilt Release (CPU only)

The prebuilt release only supports executing ONNX operators with ONNXRuntime on the CPU execution provider.

Note: The CPU-only restriction is not relevant for nodes which have pure SDFG implementations. Nodes with pure implementations can be executed on CPUs, GPUs and FPGAs.

To install, download the prebuilt release and extract it somewhere.

```
wget https://github.com/orausch/onnxruntime/releases/download/v2/onnxruntime-daceml-
\hookrightarrowpatched.tgz
tar -xzf onnxruntime-daceml-patched.tgz
```

Afterwards, ensure that the environment variable ORT_RELEASE points to the location of the extracted folder.

[^0]
1.1.2 Build from Source

Clone the patched onnxruntime repository somewhere and build it using the following commands.

```
git checkout add-session-state
./build.sh --build_shared_lib --parallel --config Release
```

To enable CUDA, add the relevant arguments. For instance:

```
./build.sh --use_cuda --cuda_version=10.1 --cuda_home=/usr/local/cuda --cudnn_home=/
\hookrightarrowusr/local/cuda --build_shared_lib --parallel --config Release
```

See onnxruntime/BUILD.md for more details on building ONNXRuntime.
Afterwards, ensure that the environment variable ORT_ROOT points to the root of cloned repository.

2.1 Library Nodes

This package adds ONNX Operators as library nodes to the SDFG IR.
There exists a ONNX library node for each supported ONNX operator. For example, ONNXConv is the ONNX library node for the Conv operator.

2.1.1 Operator Parameters (Inputs and Outputs)

The parameters for an operator are specified by adding a connector with the name of the parameter. By default, ops already have connectors for the required parameters, but connectors for optional parameters need to be added manually.

2.1.2 Variadic Parameters

Variadic parameters are specified by adding \qquad followed by the index of the variadic parameter. For example, the ONNXSUm operator has a variadic input named data_0. If we wanted to add 3 inputs that connect to this variadic parameter, we would add the connectors: data_0__0, data_0__1 and data_0__2. The indices after __ specify the order of the variadic parameters.

Note: For the variadic parameters to parse correctly, the indices should not have leading zeros. Furthermore, the indices should be sequential without gaps. For example, adding connectors data_0__0, data_0__ 2 to the ONNXSum operator is invalid because the parameter with index 1 is missing.

2.1.3 Attributes

Attributes are set by passing them to the constructor (as python types). For example, the following code sets the stride parameter.

```
from daceml.onnx import ONNXConv
conv = ONNXConv("MyConvNode", strides=[2, 2])
```

The following attribute types are supported:

- INT - passed as int.
- INTS - passed as List [int].
- STRING - passed as str.
- STRINGS - passed as List [str].
- FLOAT - passed as float.
- FLOATS - passed as List [float].
- TENSOR - passed as numpy.ndarray.

2.1.4 Example

The following examples setup and run an SDFG containing an ONNX Conv operator using ONNXConv.
This can be done using the python frontend:

```
import dace
import daceml.onnx as donnx
import numpy as np
@dace.program
def conv_program(X_arr: dace.float32[5, 3, 10, 10],
    W_arr: dace.float 32[16, 3, 3, 3]):
    output = dace.define_local([5, 16, 4, 4], dace.float32)
    donnx.ONNXConv(X=X_arr, W=W_arr, Y=output, strides=[2, 2])
    return output
X = np.random.rand(5, 3, 10, 10).astype(np.float 32)
W = np.random.rand(16, 3, 3, 3).astype(np.float 32)
result = conv_program(X_arr=X, W_arr=W)
```

or the SDFG API:

```
import dace
from daceml.onnx import ONNXConv
import numpy as np
sdfg = dace.SDFG("conv_example")
sdfg.add_array("X_arr", (5, 3, 10, 10), dace.float32)
sdfg.add_array("W_arr", (16, 3, 3, 3), dace.float32)
sdfg.add_array("Z_arr", (5, 16, 8, 8), dace.float32)
state = sdfg.add_state()
access_X = state.add_access("X_arr")
access_W = state.add_access("W_arr")
access_Z = state.add_access("Z_arr")
conv = ONNXConv("MyConvNode")
state.add_node (conv)
state.add_edge(access_X, None, conv, "X", sdfg.make_array_memlet("X_arr"))
state.add_edge(access_W, None, conv, "W", sdfg.make_array_memlet("W_arr"))
state.add_edge(conv, "Y", access_Z, None, sdfg.make_array_memlet("Z_arr"))
X = np.random.rand(5, 3, 10, 10).astype(np.float 32)
W = np.random.rand(16, 3, 3, 3).astype(np.float 32)
Z = np.zeros((5, 16, 8, 8)).astype(np.float 32)
sdfg(X_arr=X, W_arr=W, Z_arr=Z)
```


2.2 Node Implementations

The ONNX library nodes work like library nodes in dace: they can have multiple implementations that can be selected prior to compilation. By default, the nodes use the onnxruntime implementation which calls the kernels from ONNXRuntime.

The implementation of a node can be chosen either by specifying the default implementation for the whole ONNX library:

```
import daceml.onnx as donnx
donnx.default_implementation = "pure"
```

Or for a specific node:

```
import daceml.onnx as donnx
donnx.ONNXMatMul.default_implementation = "pure"
```

Note that if an implementation doesn't exist, or cannot be applied, the node expansion will fall back to onnxruntime.

2.2.1 Implementation Registration

Implementations for an ONNX node can be registered by implementing the abstract ONNXFOrward class. The implementation can be registered using the op_implementation () decorator. For registration, the parameters op and name must be passed, where op is the name of the ONNX op (without the ONNX prefix), and name is the name of the implementation.

For example:

```
import daceml.onnx as donnx
from daceml.onnx.op_implementations import op_implementation
from daceml.onnx.forward_implementation_abc import ONNXForward
@op_implementation(op="MatMul", name="my_implementation_name")
class MyMatMul(ONNXForward):
# can then be used with the library nodes
donnx.ONNXMatMul.default_implementation = "my_implementation_name"
```

Implementations should assume that the node has been validated before it was passed to the expansion. This means that:

- input edges are only connected to valid connectors for the ONNX op
- all ONNX required parameters have been connected
- variadic parameters are correctly passed (correctly formed, and without gaps in the indexing)
- the types of parameters solve correctly according to the type constraints given by the onnx specification
- all required attributes have been set

Implementations can choose to reject certain classes of the node the expand, by implementing the (optional) forward_can_be_applied() method.

2.2.2 Pure Implementations

Several nodes have an SDFG implementation (i.e. not ONNXRuntime based). The list of all implementations can be found here.

2.3 Importing ONNX models

ONNX models can be imported using the ONNXMOdel frontend.

```
import onnx
import os
import numpy as np
from daceml.onnx import ONNXModel
# Download an ONNX model. For example:
# https://github.com/onnx/models/raw/master/vision/classification/efficientnet-lite4/
\hookrightarrowmodel/efficientnet-lite4-11.onnx
model_path = os.path.join("..", "tests", "onnx_files", "efficientnet.onnx")
model = onnx.load(model_path)
dace_model = ONNXModel("efficientnet", model)
test_input = np.random.rand(1, 3, 224, 224).astype(np.float 32)
dace_model(test_input)
```


2.4 Schema Representation \& Protobuf conversion

ONNX protobufs are imported and converted to python property classes that can be serialized to and from json by dace (for example ONNXSchema). ONNX protobuf instances can be converted to these classes using the from_onnx_proto class method that is present on these objects.

These objects are created using onnx_representation(). Other ONNX protobuf types can likely be supported in this manner as well. For examples, see the source file daceml/onnx/schema.py.

PYTORCH INTEGRATION

A PyTorch nn. Module can be imported using the DaceModule wrapper or dace_module decorator.

```
import torch
import torch.nn.functional as F
from daceml.pytorch import DaceModule, dace_module
# Input and size definition
B, H, P, SM, SN = 2, 16, 64, 512, 512
N = P * H
Q, K, V = [torch.randn([SN, B, N]), torch.randn([SM, B, N]), torch.randn([SM, B, N])]
# DaCe module used as a wrapper
ptmodel = torch.nn.MultiheadAttention(N, H, bias=False)
dace_model = DaceModule(ptmodel)
outputs_wrapped = dace_model(Q, K, V)
# DaCe module used as a decorator
@dace_module
class Model(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 4, kernel_size)
        self.conv2 = nn.Conv2d(4, 4, kernel_size)
    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
dace_model = Model(3)
outputs_dec = dace_model(torch.rand(1, 1, 8, 8))
```


AUTOMATIC DIFFERENTIATION

Warning: The symbolic automatic differentiation feature still experimental.

DaCeML takes a different approach to automatic differentiation than most deep learning frameworks. Instead of hand-writing backward passes for all differentiable operators, DaceML has a symbolic reverse-mode differentation engine.

4.1 Using Autodiff

There are two main ways to generate backward passes in DaCeML.
DaceModule This class includes a backward parameter. If True, the autodiff engine will be used to add a backward pass to the PyTorch module, and the resulting module can be seamlessly used with other PyTorch code. For example:

```
import torch.nn.functional as F
from daceml.pytorch import dace_module
@dace_module(backward=True)
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(784, 120)
        self.fc2 = nn.Linear(120, 32)
        self.fc3 = nn.Linear(32, 10)
        self.ls = nn.LogSoftmax(dim=-1)
    def forward(self, x):
        x = F.relu(self.fcl(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        x = self.ls(x)
        return x
x = torch.randn(8, 784)
y = torch.tensor([0, 1, 2, 3, 4, 5, 6, 7], dtype=torch.long)
model = Net()
criterion = nn.NLLLoss()
```

```
prediction = model(x)
loss = criterion(prediction, y)
print(f"gradients before: {model.model.fc3.weight.grad}")
# gradients can flow through model!
loss.backward()
print(f"gradients after: {model.model.fc3.weight.grad}")
```

add_backward_pass ()

The autodiff engine can also be run on plain SDFGs. Here, the output S of the dace function/sdfg is differentiated w.r.t to X and Y .

```
from daceml.autodiff import add_backward_pass
@dace.program
def dace_gemm(
    X: dace.float32[5, 4],
    Y: dace.float32[4, 3],
    Z: dace.float32[5, 3],
    S: dace.float32[1],
) :
    Z[:] = X @ Y
    @dace.map(_[0:5, 0:3])
    def summap(i, j):
        s >> S(1, lambda x, y: x + y)[0]
        z<< Z[i, j]
        s = z
sdfg = dace_gemm.to_sdfg()
add_backward_pass(sdfg=sdfg, state=sdfg.nodes()[0], inputs=["X", "Y"],
->outputs=["S"])
```


4.2 Architecture

At its core, the automatic differentiation engine attempts to lift the SymPy scalar differentiation engine to tensor programs. The SDFG IR is especially suitable for this for two reasons:

- In most SDFGs, computation (i.e. Tasklets) operates on scalars, which can often be differentiated symbolically by SymPy.
- The SDFG IR precisely specifies which Tasklets read and write to which memory locations. This information makes it simple to correctly sum the gradient contribution from each tasklet.

At a high level, it operates as follows:

1. Find the AccessNode for each input and output of the SDFGState. Use these to determine the subgraph to differentiate.
2. Traverse the subgraph in reverse topological order. For each node:

- Call a function that reverses the node. To reverse the node, the engine checks the BackwardImplementation repository for a registered \& applicable backward implementation for
that node. If no such function exists and the node is a LibraryNode, attempt to differentiate the pure expanded version of the node. Otherwise, call the relevant function on BackwardGenerator. Main subtleties here are clarified in Extending the Engine. Note that this includes a recursive call for NestedSDFG nodes (forwarding intermediate values is a source of complexity here).
- Connect required inputs. This includes gradients of outputs of the node, as well as the values of inputs of the node (which potentially need to be routed through reversed maps, or through the hierarchy of NestedSDFG s).

4.3 Extending the Engine

When attempting to differentiate a LibraryNode, the engine will recursively expand the node until it is in a form that the engine can differentiate. Usually, this means that the engine will expand the node down to the "pure" implementation consisting of simple tasklets and maps.

However, it is sometimes desirable to "exit" this expansion process at a stage earlier than the lowest level. For instance, consider differentiating the ONNXMatMuI library node. Since no backward implementation exists for this node, it will be expanded to its pure version, an ONNXEinsum. Fully expanding this node into its pure form would result in a mapped tasklet, which we could differentiate. However, we would like to use BLAS nodes on the forward and backward pass where possible. To achieve this, a custom backward implementation is registered for ONNXEinsum, which returns a NestedSDFG containing other einsums. Since we avoid lowering to the lowest level, we are able to preserve information, and can later potentially expand both the forward and backward pass einsums to more efficient BLAS calls.

Another example is ONNXSOftmax: a typical implementation includes a maximum operation for numerical stablility. Differentiating this implementation results in several argmax calls, which is not desirable.

In situations like these, it makes sense to provide a custom backward pass implementation.
These implementations are registered using BackwardImplementation. This requires implementation of backward(). Examples of this are daceml.autodiff.implementations. onnx_ops.DefaultEinsumBackward and daceml.autodiff.implementations.onnx_ops. DefaultSoftmaxBackward.

DEVELOPMENT

The Makefile contains a few commands for development tasks such as running tests, checking formatting or installing the package.

For example, the following command would install the package and run tests:

```
VENV_PATH='' make install test
```

If you would like to create a virtual environment and install to it, remove $V E N V_{-} P A T H=$ " from the above command.

5.1 Specific Package Versions

The DACE_VERSION and TORCH_VERSION variables can be used to install specific versions of those packages over the recommended ones. For example, you can use a local dace repository using:

```
DACE_VERSION='-e /path/to/dace/' make clean install
```


5.2 Makefile Targets

The CI runs several tests using the Makefile:
make test, make test-parallel \& make test-gpu Run pytest on the tests/directory. CPU tests can be run in parallel using the test-parallel target.
make doctest Run doctests; this executes the code samples in the documentation and docstrings.
make doc Build the documentation.
make check-formatting This runs the formatting checks. The DaCeML codebase is formatted using yapf. Use check-formatting-names to only print the names of the misformatted files.

5.3 Testing

DaCeML uses pytest to run tests. The pytest runner takes a custom argument --gpu to run GPU tests. Tests can be parallelized using xdist by passing the arguments -n auto --dist loadfile.
If you provide the fixture (i.e. an argument to the test) with name gpu, then the test will be parameterized to pass both True and False to that argument.

5.3.1 Setting the default implementation

Nodes can be expanded to different implementations (See Node Implementations). To control the default implementation that is used, tests can be decorated with the following two markers.
pytest.mark.ort Use the ONNXRuntime expansion as default
pytest.mark.pure Use the pure expansion as default when possible (falling back to ONNXRuntime)
If you provide the fixture (i.e., an argument to the test) with name default_implementation, then the test will be parameterized to test both implementations.

5.4 Useful Snippets

5.4.1 GPU Leak checker

Put this code in tests/conf.py:

```
import xml.etree.ElementTree as ET
import subprocess
import shlex
import torch
# initialize torch cuda context
a = torch.ones(1, 1).cuda()
def _get_gpu_mem_usage():
    result = subprocess.check_output(shlex.split("nvidia-smi -x -q"))
    usage_str = ET.fromstring(result).find("gpu").find("fb_memory_usage").find("used
\hookrightarrow").text
    if not usage_str.endswith(" MiB"):
        raise RuntimeError("Couldn't parse nvidia-smi output")
    return int(usage_str[:-4])
@pytest.fixture(autouse=True)
def memory_printer():
    before = _get_gpu_mem_usage()
    log.debug(f"Usage before: {before}")
    yield
    after = _get_gpu_mem_usage()
    log.debug(f"Usage after: {after}, delta: {after - before}")
    assert after - before < 200
```


6.1 Using ONNX Library Nodes

This example demonstrates using ONNX library nodes.
The easiest way to use ONNX library nodes is using the dace python frontend

```
import dace
import daceml.onnx as donnx
import numpy as np
@dace.program
def conv_program(X_arr: dace.float 32[5, 3, 10, 10], W_arr: dace.float 32[16, 3,
                                    3, 3]):
    output = np.ndarray([5, 16, 4, 4], dtype=np.float32)
    donnx.ONNXConv(X=X_arr, W=W_arr, Y=output, strides=[2, 2])
    return output
```

The resulting SDFG contains an instance of the ONNXConv library node.

```
conv_program.to_sdfg()
```

We can now execute the program with some example inputs

```
X = np.random.rand(5, 3, 10, 10).astype(np.float 32)
W = np.random.rand(16, 3, 3, 3).astype(np.float 32)
result = conv_program(X_arr=X, W_arr=W)
```

Let's check the correctness vs. PyTorch

```
import torch
import torch.nn.functional as F
torch_result = F.conv2d(torch.from_numpy(X), torch.from_numpy(W),
    stride=2).numpy()
assert np.allclose(torch_result, result)
np.linalg.norm(torch_result - result)
```

Out:

```
2.3904955e-05
```

We can also use ONNX nodes using the SDFG Python API.

```
from daceml.onnx import ONNXConv
sdfg = dace.SDFG("conv_example")
sdfg.add_array("X_arr", (5, 3, 10, 10), dace.float32)
sdfg.add_array("w_arr", (16, 3, 3, 3), dace.float32)
sdfg.add_array("Z_arr", (5, 16, 4, 4), dace.float32)
state = sdfg.add_state()
access_X = state.add_access("X_arr")
access_W = state.add_access("W_arr")
access_Z = state.add_access("Z_arr")
conv = ONNXConv("MyConvNode", strides=[2, 2])
state.add_node (conv)
state.add_edge(access_X, None, conv, "X", sdfg.make_array_memlet("X_arr"))
state.add_edge(access_W, None, conv, "W", sdfg.make_array_memlet("W_arr"))
state.add_edge(conv, "Y", access_Z, None, sdfg.make_array_memlet("Z_arr"))
sdfg
```

The SDFG looks the same as the one above. Now let's try running it

```
Z = np.zeros((5, 16, 4, 4)).astype(np.float32)
sdfg(X_arr=X, W_arr=W, Z_arr=Z)
assert np.allclose(torch_result, Z)
np.linalg.norm(torch_result - Z)
```

Out:

```
2.3904955e-05
```

Total running time of the script: (0 minutes 7.763 seconds)

6.2 Optimizing the Mish Operator

DaCeML allows users to optimize DNN modules at all levels of granularity, from operators to full models. In this example, we optimize the Mish operator ${ }^{1}$, a relatively novel activation function that, among other uses, has been applied successfully in object detection. ${ }^{2}$

Due to its novelty, it has, at the time of writing, not been implemented in PyTorch, ONNX or ONNX Runtime. We demonstrate how DaCeML can be used to optimize this operator.

We begin with code for the PyTorch Module, and import it into DaCeML by annotating it with the @dace_module decorator.

```
import torch
from torch import nn
from torch.nn import functional as F
```

[^1]```
from daceml.pytorch import dace_module
@dace_module(cuda=True, backward=True)
class DaCeMish(nn.Module):
 def __init__(self):
 super().__init__()
 def forward(self, x):
 x = x * (torch.tanh(F.softplus(x)))
 return x
```

The module works immediately with DaCeML for the forward pass.
The first time we tested this, we found that the automatic differentiation failed due to an missing pure implementation for ONNXSOftplus. Fortunately, adding these implementations is easily done using the DaCe python frontend. The following code shows the pure implementation that was added.

```
@python_pure_op_implementation
def Softplus(X, Y):
 Y[:] = np.log(1 + np.exp (X))
```

Let's test the operator and compare with a PyTorch version

```
class Mish(nn.Module):
 def __init__(self):
 super().__init__()
 def forward(self, x):
 x = x * (torch.tanh(F.softplus(x)))
 return x
create test inputs (size taken from YOLOv4)
with torch.no_grad():
 dace_input = torch.rand(8, 32, 224, 224).cuda()
 torch_input = torch.clone(dace_input)
 dace_dy = torch.rand(8, 32, 224, 224).cuda()
 torch_dy = torch.clone(dace_dy)
dace_input.requires_grad = True
torch_input.requires_grad = True
torch_mish = Mish().cuda()
dace_mish = DaCeMish()
dace_output = dace_mish(dace_input)
dace_output.backward(dace_dy)
torch_output = torch_mish(torch_input)
torch_output.backward(torch_dy)
assert torch.allclose(dace_output, torch_output)
assert torch.allclose(dace_input.grad, torch_input.grad)
```

Let's profile this implementation

```
from daceml.testing.profiling import time_funcs, print_time_statistics
def run_dace():
 out = dace_mish(dace_input)
 out.backward(dace_dy)
def run_torch():
 out = torch_mish(torch_input)
 out.backward(torch_dy)
times = time_funcs([run_dace, run_torch],
 func_names=["dace", "torch"],
 warmups=5,
 num_iters=100)
print_time_statistics(times, ["dace", "torch"])
```

Out:

| Name | Min | Mean | Median | Stdev | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
| dace | 11.6968 | 12.6615 | 12.2345 | 1.7286 | 26.7186 |
| torch | 4.7779 | 4.8643 | 4.8738 | 0.0264 | 4.8814 |

### 6.2.1 Inspection

```
Let's inspect the forward pass SDFG first.
dace_mish.forward_sdfg
```

We can see that there is a lot of unnecessary data movement on the forward pass. Fusing the different maps would greatly improve runtime.

Now let's look at the backward pass.

```
dace_mish.backward_sdfg
```

We also see another opportunity for optimization: The DaCeML autodiff engine is "forwarding" intermediate values to perform the differentiation. This means that the intermediate values have to be written out in the forward pass, and and read in the backward pass.

### 6.2.2 Optimization

To improve the runtime, we'll apply three transformations.
Firstly, we'll use SubgraphFusion to fuse all the maps into a single kernel. To tackle the issue of forwarding intermediate values in backprop, we'll use the TaskletFusion transformation. By fusing the tasklets into a single tasklet before running automatic differentiation, the engine will differentiate the whole expression at once, eliminating the need to access the intermediate values. This is an easy way to tune recomputation vs. storage in automatic differentiation.

Finally, we'll apply Vectorization to make our kernels operate on more than one element at once.

```
from daceml.transformation import TaskletFusion
from dace.transformation.dataflow import Vectorization, TrivialMapRangeElimination
from dace.transformation.subgraph import SubgraphFusion
from daceml.util import utils
from dace.library import change_default
from daceml import onnx as donnx
reset the compiled sdfg
dace_mish.reset_sdfg()
expand the onnx nodes, and apply automatic transformations like inlining
def expand_and_strict_transforms(module):
 # use the pure expansions of operators
 with change_default(donnx, "pure"):
 utils.auto_optimize(module.sdfg, cuda=True, apply_strict=True)
dace_mish.append_post_onnx_hook("auto_optimize", expand_and_strict_transforms)
apply subgraph fusion
def fuse_sg(module):
 sdfg = module.sdfg
 sdfg.apply_transformations_repeated(TrivialMapRangeElimination)
 SubgraphFusion.apply_to(sdfg, *sdfg.node(0).nodes())
dace_mish.append_post_onnx_hook("subgraph_fusion", fuse_sg)
apply tasklet fusion
dace_mish.append_post_onnx_hook("fuse_tasklets", lambda x:\
 x.dace_model.sdfg.apply_transformations_repeated(TaskletFusion))
apply vectorization
def vectorize(fwd, bwd):
 fwd.apply_transformations(Vectorization)
 bwd.apply_transformations(Vectorization)
dace_mish.append_post_autodiff_hook("vectorize", vectorize)
```

Let's check that the new SDFG is still correct.

```
dace_output = dace_mish(dace_input)
dace_output.backward(dace_dy)
torch_output = torch_mish(torch_input)
torch_output.backward(torch_dy)
assert torch.allclose(dace_output, torch_output)
assert torch.allclose(dace_input.grad, torch_input.grad)
```

Out:
/opt/actions-runner/_work/daceml/daceml/venv/lib/python3.7/site-packages/dace/sdfg/ $\hookrightarrow$ sdfg.py:1755: UserWarning: SDFG "DaCeMish" is already loaded by another object, $\quad$ $\hookrightarrow$ recompiling under a different name.
(continues on next page)

```
 'recompiling under a different name.' % self.name)
/opt/actions-runner/_work/daceml/daceml/venv/lib/python3.7/site-packages/dace/sdfg/
\hookrightarrowsdfg.py:1755: UserWarning: SDFG "DaCeMish_backward" is already loaded by another
\hookrightarrowobject, recompiling under a different name.
 'recompiling under a different name.' % self.name)
```

After running the module once, we can also inspect the compiled SDFG for the forward and backward pass.

```
dace_mish.forward_sdfg
```

```
dace_mish.backward_sdfg
```

Now we can profile the optimized module.

```
times = time_funcs([run_dace, run_torch],
 func_names=["dace", "torch"],
 warmups=5,
 num_iters=100)
print_time_statistics(times, ["dace", "torch"])
```

Out:


Let's also try PyTorch JIT compilation.

```
import torch.jit
torch_jit = torch.jit.trace(Mish(), torch_input)
def run_torch_jit():
 out = torch_jit(torch_input)
 out.backward(torch_dy)
times = time_funcs([run_dace, run_torch, run_torch_jit],
 func_names=["dace", "torch", "torch_jit"],
 warmups=5,
 num_iters=100)
print_time_statistics(times, ["dace", "torch", "torch_jit"])
```

Out:

| Name | Min | Mean | Median | Stdev | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \| dace | 1.5571 | 1.5885 | 1.5888 | 0.0035 | 1.5989 |
| \| torch | 4.3418 | 4.3462 | 4.3459 | 0.0015 | 4.3517 |
| \| torch_jit | 3.8157 | 3.8183 | 3.8183 | 0.0010 | 3.8216 |

Total running time of the script: ( 1 minutes 44.541 seconds)

## DACEML.AUTODIFF

### 7.1 Generating Backward Passes

## add_backward_pass (sdfg, state, outputs, inputs)

Experimental: Add a backward pass to state using reverse-mode automatic differentiation.
inputs, outputs and grads can be provided either as AccessNode nodes, or as str, in which case the graph will be searched for exactly one matching AccessNode with data matching the str.

The SDFG should not contain any inplace operations. It may contain the following nodes:

- Maps
- AccessNodes
- Reductions (Sum, Min, Max)
- ONNXOps
- NestedSDFGs containing a single SDFGState (subject to the same constraints). NestedSDFGs may contain multiple states as long as all other states are only used for zero initialization.

When differentiating an ONNXOp, the ONNXBackward registry will be checked for any matching backward pass implementations. If none are found, the ONNXForward registry will be checked for matching pure implementations. If one is found, symbolic differentiation of the pure implementation will be attempted. If this fails, or no pure forward implementation is found, the method will fail.

## Parameters

- sdfg (SDFG) - the parent SDFG of state.
- state (SDFGState) - the state to add the backward pass to. This is also the state of the forward pass.
- outputs (List[Union[AccessNode, str]]) - the forward pass outputs of the function to differentiate.
- inputs (List[Union[AccessNode, str]]) - the inputs w.r.t. which the gradient will be returned.
make_backward_function (model, apply_strict=False)
Convert an ONNXModel to a PyTorch differentiable function. This method should not be used on its own. Instead use the backward=True parameter of dacemI. pytorch. DaceModule.


## Parameters

- model (ONNXModel) - the model to convert.
- apply_strict - whether to apply strict transformations before creating the backward pass.

Return type Tuple[SDFG, SDFG, BackwardResult, Dict[str, Data]]
Returns A 4-tuple of forward SDFG, backward SDFG, backward result, and input arrays for backward pass (as mapping of names to DaCe data descriptors).

### 7.2 Extending Autodiff

## class BackwardImplementation

ABC for ONNX op forward implementations.
This registry accepts two types of registrations. The register function expects an argument node_type=TYPE where TYPE is the type of node that this backward implementation supports. It can also take an argument op=node_name where node_name is the string of the ONNX op it supports, e.g. "Conv".

It also expects a name argument that names the implementation.
abstract static backward (forward_node, context, given_gradients, required_gradients)
Add the reverse node for a node from the forward pass to the backward pass, and return it.
For each input connector with name $n$ of the forward in required_grads, the returned backward node must add an output connector with name required_grads [ $n$ ] that will output the gradient for that input.
If any input from the forward pass is required, simply add a connector with the same name as the connector on the forward node. The input will later be connected as required.

## Parameters

- forward_node (Node) - the node for which the backward pass should be generated for.
- context (BackwardContext) - the context for this node (see BackwardContext).
- given_gradients (List[Optional[str]]) - The names of outputs of the node that gradients will be connected for.
- required_gradients (List[Optional[str]]) - The names of connectors that gradients should be generated for.


## Return type Tuple[Node, BackwardResult]

Returns the reverse node and gradient names (see BackwardResult).
static backward_can_be_applied (node, state, sdfg)
Return whether this expansion can be applied.

## Parameters

- node (Node) - the candidate node.
- state (SDFGState) - the candidate state.
- sdfg (SDFG) - the candidate sdfg.


## Return type bool

class BackwardContext (forward_sdfg, forward_state, backward_sdfg, backward_state, backward_generator)
Bases: ob ject
A tuple holding the graph context required to construct reverse nodes
Parameters

- forward_sdfg (dace.sdfg.sdfg. SDFG) -
- forward_state (dace.sdfg.state.SDFGState) -
- backward_sdfg (dace.sdfg.sdfg.SDFG) -
- backward_state (dace.sdfg.state.SDFGState) -
- backward_generator (daceml.autodiff.backward_pass_generator. BackwardPassGenerator) -

Return type None
backward_generator: daceml.autodiff.backward_pass_generator.BackwardPassGenerator the backward pass generator
backward_sdfg: dace.sdfg.sdfg.SDFG the backward SDFG
backward_state: dace.sdfg.state.SDFGState the backward SDFG state
forward_sdfg: dace.sdfg.sdfg.SDFG the forward SDFG
forward_state: dace.sdfg.state.SDFGState
the forward SDFG state
class BackwardResult (required_grad_names, given_grad_names)
Bases: object
The return type of a differentiated node. It contains the names of the gradients the node calculates and requires.

## Parameters

- required_grad_names (Dict[Optional[str], Optional[str]])-
- given_grad_names (Dict[Optional[str], Optional[str]])-

Return type None
given_grad_names: Dict[Optional[str], Optional[str]]
mapping from names of input connectors to the connector name of the gradient for that connector.
required_grad_names: Dict[Optional[str], Optional[str]]
mapping from names of output connectors to the connector name of the gradient for that connector.

## DACEML.ONNX

has_onnx_node (name)
Check if an ONNX operator is supported.
Parameters name (str) - the operator name.
Return type bool
get_onnx_node (name)
Get the ONNX Operator node for an operator by name.
Parameters name (str) - the operator name
Return type ONNXOp
class ONNXModel (name, model, infer_shapes=True, cuda=False, apply_strict=False, auto_optimize=True, fold_constants=True, parent_pytorch_module $=$ None, storage $=$ None, save_transients $=$ None, auto_merge $=$ False )
Loads an ONNX model into an SDFG.
Example First download an ONNX model, such as efficientnet.

```
import onnx
import os
import numpy as np
from daceml.onnx import ONNXModel
model_path = os.path.join("..", "tests", "onnx_files", "efficientnet.
@onnx")
model = onnx.load(model_path)
dace_model = ONNXModel("efficientnet", model)
test_input = np.random.rand(1, 3, 224, 224).astype(np.float 32)
dace_model(test_input)
```


## Parameters

- name (str) - the name for the SDFG.
- model (ModelProto) - the model to import.
- infer_shapes (bool) - whether to infer shapes for the model. If this is False, the model must have value infos (with shapes) for all arrays, including intermediate values.
- cuda (bool) - if True, the model will be executed on the GPU.
- apply_strict (bool) - if True, apply strict transformations after all nodes have been expanded calling (warning: this can be very slow!)
- auto_optimize (bool) - if True, apply automatic optimizations before calling.
- parent_pytorch_module (Optional[Module]) - when not None, the weight tensors are loaded from the parameters of this model rather than the ONNX graph.
- storage (Optional[StorageType]) - the storage type of the parameters, inputs and outputs. If None, will be set according to cuda.
- save_transients (Optional[Dict[str, Tensor]]) - if not None, save transients to this dict (for debugging).
- auto_merge (bool) - whether to automatically merge symbolic shapes in symbolic shape inference.
- fold_constants (bool) -
__call__(*args, **kwargs)
Execute the model.


## Parameters

- args - positional arguments to the model. The i-th argument will be passed as the i-th input of the model.
- kwargs - named arguments to the model. The passed names should match the names in the ONNX model.

Return type Union[Tensor, ndarray, Tuple[Union[Tensor, ndarray]]]
Returns the output of the model (or a tuple of outputs if there are multiple).
compile_and_init()
Compile the SDFG and load parameters into GPU memory.

## Return type CompiledSDFG

## inputs: List[str]

the inputs to the model
outputs: List[str]
the outputs of the model
sdfg: SDFG
the generated SDFG.
state: SDFGState
the state containing the model computation.
weights: Dict[str, torch.Tensor] mapping from weight name to array
class ONNXOp (*args, **kwargs)
Bases: dace.sdfg.nodes.LibraryNode
Abstract superclass for all ONNX ops. Do not use this class, use the concrete subclasses (e.g. ONNXConv) instead.

## backward_implementation

Which implementation this library node will expand into in the backward pass.
iter_edges (state)
Returns an iterator over tuples of an edge and a boolean that indicates whether that edge is an input, ordered by the order required by the schema. This method assumes that this node has been validated.

Parameters state (SDFGState) - the state containing this node.
Return type Iterator[Tuple[MultiConnectorEdge, bool]]
iter_inputs_in_onnx_order (state)
Iterate through the output edges in the same order as they would appear in an ONNX node proto. This assumes that the node has been validated!

Parameters state (SDFGState) - the state containing this node.
Return type List[MultiConnectorEdge]
Returns the in edges in the order as they would appear in the node proto.

```
iter_outputs_in_onnx_order (state)
```

Iterate through the input edges in the same order as they would appear in an ONNX node proto. This assumes that the node has been validated!

Parameters state (SDFGState) - the state containing this node.
Return type List[MultiConnectorEdge]
Returns the out edges in the order as they would appear in the node proto.

## schema

The operator's ONNX OpSchema
validate (sdfg, state)
Validate this node.

## Parameters

- sdfg (SDFG) - the parent sdfg.
- state (SDFGState) - the parent state.


### 8.1 Schema Representation

## onnx_representation (represents, **mapping)

Decorator for python representations of ONNX protobufs.
The decorator will monkey patch in the following methods:

- __init__ (a constructor based on the class properties)
- construct_from_onnx_proto
- construct_from_json


## Parameters

- represents - The onnx protobuf type that the decorated class represents
- mapping - a mapping from class property names to either:
a string s In this case, convert_onnx_attribute will be applied on the protobuf attribute with the name $s$ to get the property value.
a function $£$ In this case, $£$ will be called with the protobuf, and the property value will be set to the return value of that call.

If a property name is not present in mapping, the property name itself will be used to access the protobuf attribute.

```
class ONNXParameterType (value=<object object>, names=None, module=None, type=None, start=1,
```

    boundary=None)
    An enumeration.

Optional = 2
optional parameters

## Single $=1$

single/required parameters
Variadic $=3$
variadic parameters
class ONNXAttributeType (value $=<$ object object $>$, names $=$ None, module $=$ None, , ype $=$ None, start $=1$, boundary=None)
An enumeration.

## Float $=2$

Float (python representation is float)
Floats = 5
Floats (python representation is List [float])
Int $=1$
Integer (python representation is int)
Ints $=4$
Ints (python representation is List [int])

## String = 3

String (python representation is str)
Strings $=6$
Strings (python representation is List [str])
Tensor $=7$
Tensor (python representation is numpy . ndarray)
Unsupported = 8
Any unsupported attribute type
class ONNXAttribute (name=", description=", required=False, attribute_type $=<$ ONNXAttributeType.Int: $1>$,default_value=None)
Python representation of an ONNX attribute.

## Parameters

- name (str, default ' ') - The attribute name
- description (str, default ' ') - A description this attribute
- required (bool, default False) - Whether this attribute is required
- attribute_type (ONNXAttributeType, default <ONNXAttributeType. Int : $1>$ ) - The type of this attribute
- default_value (NoneType, default None) - The default value of this attribute


## attribute_type

The type of this attribute

```
default_value
```

The default value of this attribute
description
A description this attribute
classmethod from_json (json, context=None)
Construct an object json

## classmethod from_onnx_proto (onnx_proto)

Construct an object from an ONNX proto of type <class 'onnx.onnx_cpp2py_export. defs. OpSchema.Attribute'>.

## name

The attribute name
required
Whether this attribute is required
to_json()
Serialize to json
class ONNXTypeConstraint (type_str=", types=[])
Python representation of an ONNX type constraint.

## Parameters

- type_str (str, default ' ') - The type parameter string
- types (list, default []) - The possible types. Note that only tensor types are currently supported.
classmethod from_json (json, context=None)
Construct an object json
classmethod from_onnx_proto (onnx_proto)
Construct an object from an ONNX proto of type <class 'onnx.onnx_cpp2py_export. defs.
OpSchema.TypeConstraintParam'>.
to_json()
Serialize to json
type_str
The type parameter string


## types

The possible types. Note that only tensor types are currently supported.
class ONNXParameter (name $=$ ", description $=$ ", type_str $=$ ", param_type $=<$ ONNXParameterType.Single:
1>, homogeneous=False)
Python representation of an ONNX parameter.

## Parameters

- name (str, default ' ') - The parameter name
- description (str, default ' ') - A description of the parameter
- type_str (str, default ' ') - The type string of this parameter
- param_type (ONNXParameterType, default <ONNXParameterType.Single: $1>$ ) - The type of the this parameter
- homogeneous (bool, default False) - Whether this parameter is homogeneous


## description

A description of the parameter
classmethod from_json (json, context=None)
Construct an object json
classmethod from_onnx_proto (onnx_proto)
Construct an object from an ONNX proto of type <class 'onnx.onnx_cpp2py_export. defs. OpSchema.FormalParameter'>.

## homogeneous

Whether this parameter is homogeneous

## name

The parameter name
param_type
The type of the this parameter
to_json()
Serialize to json

## type_str

The type string of this parameter
class ONNXSchema (name=", domain=", doc=", since_version=0, attributes=\{\}, type_constraints=\{\}, inputs=[], outputs=[])
Python representation of an ONNX schema

## Parameters

- name (str, default ' ') - The operator name
- domain (str, default ' ') - The operator domain
- doc (str, default ' ') - The operator's docstring
- since_version (int, default 0 ) - The version of the operator
- attributes (dict, default \{\}) - The operator attributes. Keys should contain the name of the attribute, and values should have type ONNXAt tribute.
- type_constraints (dict, default \{\}) - The type constraints for inputs and outputs. Keys should contain the type string of the constraint, values should have type ONNXTypeConstraint.
- inputs (list, default []) - The operator input parameter descriptors. Entries should have type ONNXParameter.
- outputs (list, default []) - The operator output parameter descriptors. Entries should have type ONNXParameter.


## attributes

The operator attributes. Keys should contain the name of the attribute, and values should have type ONNXAttribute.
doc
The operator's docstring

## domain

The operator domain
classmethod from_json (json, context=None)
Construct an object json
classmethod from_onnx_proto (onnx_proto)
Construct an object from an ONNX proto of type <class 'onnx.onnx_cpp2py_export. defs. OpSchema'>.

## inputs

The operator input parameter descriptors. Entries should have type ONNXParameter.
name
The operator name

## outputs

The operator output parameter descriptors. Entries should have type ONNXP arameter.
since_version
The version of the operator
to_json()
Serialize to json
type_constraints
The type constraints for inputs and outputs. Keys should contain the type string of the constraint, values should have type ONNXTypeConstraint.

### 8.2 Op Implementation Registration

## class ONNXForward

ABC for ONNX op forward implementations.
The register function expects an argument op containing the ONNX op name (string).
abstract static forward (node, state, sdfg)
Expand node and return its expansion.

## Parameters

- node (ONNXOP) - the candidate node.
- state (SDFGState) - the candidate state.
- sdfg (SDFG) - the candidate sdfg.

Return type Union[Node, SDFG]
Returns the expanded node.
static forward_can_be_applied (node, state, sdfg)
Return whether this expansion can be applied.

## Parameters

- node (ONNXOP) - the candidate node.
- state (SDFGState) - the candidate state.
- sdfg (SDFG) - the candidate sdfg.

Return type bool
Returns whether this expansion can be applied.
op_implementation (op, name)
A decorator that registers an op implementation. It should be used on classes that extend ONNXFOrward.
Parameters

- op - the ONNX name of the op to register for.
- name - the name of the implementation.


### 8.3 SDFG-based ONNX Implementations

```
class PureCast
 Bases: daceml.onnx.forward_implementation_abc.ONNXFOrward
 Implementation name "pure"
class PureEinsum
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureErf
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureFlatten
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Flatten Expansion, reuses Reshape implementation
 Implementation name "pure"
class PureGemm
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureLog
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureLogSoftmax
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureMatMul
 Bases: daceml.onnx.forward_implementation_abc.ONNXFOrward
 Implementation name "pure"
class PurePow
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureReciprocal
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureReduceMax
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureReduceMean
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureReduceMin
 Bases: daceml.onnx.forward_implementation_abc.ONNXFOrward
```

```
Implementation name "pure"
class PureReduceSum
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureRelu
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureReshape
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Reshape expansion: this relies on views
 Implementation name "pure"
class PureSigmoid
 Bases: daceml.onnx. forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureSoftmax
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureSqrt
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureSum
 Bases: daceml.onnx. forward_implementation_abc.ONNXForward
 Implementation name "pure"
class PureTranspose
 Bases: daceml.onnx.forward_implementation_abc.ONNXForward
 Implementation name "pure"
```


### 8.3.1 Image-related Implementations

## class PureBatchNormalization

```
Bases: daceml.onnx.forward_implementation_abc.ONNXForward
Implementation name "pure"
```


## class PureConv2D

```
Bases: daceml.onnx.forward_implementation_abc. ONNXForward
The "trivial" convolution implementation, i.e. two nested maps.
Implementation name "pure"
class PureMaxPool2D
Bases: daceml. onnx. forward_implementation_abc. ONNXForward
Implementation name "pure"
```


### 8.4 Dace CMake Environments

```
class ONNXRuntime(*args,**kwargs)
```

Environment used to run ONNX operator nodes using ONNX Runtime. See Installing ONNXRuntime for installation instructions.
class ONNXRuntimeCUDA (*args, **kwargs)
Environment used to run ONNX operator nodes using ONNX Runtime, with the CUDA execution provider. See Installing ONNXRuntime for installation instructions.

### 8.5 Supported ONNX Operators

The following documentation is mostly automatically generated from the ONNX documentation, except for the removal of unsupported attributes and nodes.

## class ONNXAbs (name, *)

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Absolute takes one input data (Tensor $<\mathrm{T}>$ ) and produces one output data (Tensor $<\mathrm{T}>$ ) where the absolute is, y $=\operatorname{abs}(\mathrm{x})$, is applied to the tensor elementwise.

## Node Inputs

- $\mathbf{X}$ (T, single) - Input tensor


## Node Outputs

- Y (T, single) - Output tensor


## Type Constraints

- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float 64

Parameters name - the name of the node.
class ONNXAcos (name, *)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Calculates the arccosine (inverse of cosine) of the given input tensor, element-wise.

## Node Inputs

- input ( T, single) - Input tensor


## Node Outputs

- output (T, single) - The arccosine of the input tensor computed element-wise


## Type Constraints

- T-float16, float 32, float 64

Parameters name - the name of the node.
class ONNXAcosh (name, *)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Calculates the hyperbolic arccosine of the given input tensor element-wise.

## Node Inputs

- input (T, single) - Input tensor


## Node Outputs

- output (T, single) - The hyperbolic arccosine values of the input tensor computed elementwise


## Type Constraints

- T-float16, float 32, float 64

Parameters name - the name of the node.
class ONNXAdagrad (name, $\quad *, \quad$ decay_factor $=0.0, \quad$ epsilon=9.999999974752427e-07, norm_coefficient=0.0)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Compute one iteration of ADAGRAD, a stochastic gradient based optimization algorithm. This operator can conduct the optimization of multiple tensor variables.
Let's define the behavior of this operator. As you can imagine, ADAGRAD requires some parameters:

- The initial learning-rate " $R$ ".
- The update count " $T$ ". That is, the number of training iterations conducted.
- A L2-norm regularization coefficient "norm_coefficient".
- A learning-rate decay factor "decay_factor".
- A small constant "epsilon" to avoid dividing-by-zero.

At each ADAGRAD iteration, the optimized tensors are moved along a direction computed based on their estimated gradient and accumulated squared gradient. Assume that only a single tensor " X " is updated by this operator. We need the value of " X ", its gradient " $G$ ", and its accumulated squared gradient " H ". Therefore, variables in this operator's input list are sequentially "R", "T", " X ", " G ", and " H ". Other parameters are given as attributes because they are usually constants. Also, the corresponding output tensors are the new value of " X " (called "X_new"), and then the new accumulated squared gradient (called "H_new"). Those outputs are computed from the given inputs following the pseudo code below.
Let " + ", "-", "*", and " $>$ " are all element-wise arithmetic operations with numpy-style broadcasting support. The pseudo code to compute those outputs is:
// Compute a scalar learning-rate factor. At the first update of $\mathrm{X}, \mathrm{T}$ is generally // 0 ( 0 -based update index) or 1 (1-based update index). $\mathrm{r}=\mathrm{R} /(1+\mathrm{T} *$ decay_factor);
// Add gradient of 0.5 * norm_coefficient * \|X\|_2^2, where \|X\|_2 is the 2 -norm.
G_regularized = norm_coefficient * X + G;
// Compute new accumulated squared gradient. H_new = H + G_regularized * G_regularized;
// Compute the adaptive part of per-coordinate learning rate. Note that Sqrt(...) // computes element-wise square-root. H_adaptive $=$ Sqrt(H_new) + epsilon
// Compute the new value of "X". X_new = X - r * G_regularized / H_adaptive;
If one assign this operators to optimize multiple inputs, for example, "X_1" and "X_2", the same pseudo code may be extended to handle all tensors jointly. More specifically, we can view " X " as a concatenation of "X_1" and "X_2" (of course, their gradient and accumulate gradient should be concatenated too) and then just reuse the entire pseudo code.
Note that ADAGRAD was first proposed in http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf. In that reference paper, this operator is a special case of the Figure 1's composite mirror descent update.

## Node Inputs

- $\mathbf{R}$ (T1, single) - The initial learning rate.
- T (T2, single) - The update count of " X ". It should be a scalar.
- inputs (T3, variadic) - The current values of optimized tensors, followed by their respective gradients, followed by their respective accumulated squared gradients. For example, if two tensor "X_1" and "X_2" are optimized, The input list would be ["X_1", "X_2", gradient of "X_1", gradient of "X_2", accumulated squared gradient of "X_1", accumulated squared gradient of "X_2"].


## Node Outputs

- outputs (T3, variadic) - Updated values of optimized tensors, followed by their updated values of accumulated squared gradients. For example, if two tensor "X_1" and "X_2" are optimized, the output list would be [new value of "X_1," new value of "X_2" new accumulated squared gradient of "X_1", new accumulated squared gradient of "X_2"].


## Type Constraints

- T1 - float 32 , float 64
- T2 - int 64
- T3 - float 32 , float 64


## Parameters

- name - the name of the node.
- decay_factor (Optional [float], default=0.0) - The decay factor of learning rate after one update.The effective learning rate is computed by $r=R /(1+T *$ decay_factor $)$. Default to 0 so that increasing update counts doesn't reduce the learning rate.
- epsilon (Optional [float], default=9.999999974752427e-07) - Small scalar to avoid dividing by zero.
- norm_coefficient (Optional [float], default=0.0) - Regularization coefficient in 0.5 * norm_coefficient * \|X\|_2^2. Default to 0 , which means no regularization.


## decay_factor

The decay factor of learning rate after one update.The effective learning rate is computed by $\mathrm{r}=\mathrm{R} /(1+\mathrm{T}$ * decay_factor). Default to 0 so that increasing update counts doesn't reduce the learning rate.

## epsilon

Small scalar to avoid dividing by zero.
norm_coefficient
Regularization coefficient in 0.5 * norm_coefficient * \|X\|_2^2. Default to 0 , which means no regularization.
class ONNXAdam (name, $\quad$ *, alpha=0.8999999761581421, $\quad$ beta=0.9990000128746033, epsilon $=9.999999974752427$ e-07, norm_coefficient $=0.0$, norm_coefficient_post=0.0)
Bases: dacemI.onnx.nodes.onnx_op.ONNXOp
Compute one iteration of Adam, a stochastic gradient based optimization algorithm. This operator can conduct the optimization of multiple tensor variables.

Let's define the behavior of this operator. First of all, Adam requires some parameters:

- The learning-rate " R ".
- The update count " $T$ ". That is, the number of training iterations conducted.
- A L2-norm regularization coefficient "norm_coefficient".
- A small constant "epsilon" to avoid dividing-by-zero.
- Two coefficients, "alpha" and "beta".

At each Adam iteration, the optimized tensors are moved along a direction computed based on their exponentially-averaged historical gradient and exponentially-averaged historical squared gradient. Assume that only a tensor " $X$ " is being optimized. The rest of required information is

- the value of " X ",
- "X"'s gradient (denoted by "G"),
- "X"'s exponentially-averaged historical gradient (denoted by "V"), and
- "X"'s exponentially-averaged historical squared gradient (denoted by "H").

Some of those parameters are passed into this operator as input tensors and others are stored as this operator's attributes. Specifically, this operator's input tensor list is ["R", "T", "X", "G", "V", "H"]. That is, " $R$ " is the first input, " $T$ " is the second input, and so on. Other parameters are given as attributes because they are constants. Moreover, the corresponding output tensors are

- the new value of " $X$ " (called "X_new"),
- the new exponentially-averaged historical gradient (denoted by "V_new"), and
- the new exponentially-averaged historical squared gradient (denoted by "H_new").

Those outputs are computed following the pseudo code below.
Let " + ", "-", "*", and "/" are all element-wise arithmetic operations with numpy-style broadcasting support. The pseudo code to compute those outputs is:
$/ /$ Add gradient of $0.5 *$ norm_coefficient $*\|X\| \_2^{\wedge} 2$, where $\|X\| \_2$ is the 2 -norm.
G_regularized $=$ norm_coefficient $* \mathrm{X}+\mathrm{G}$
// Update exponentially-averaged historical gradient. V_new $=$ alpha $* \mathrm{~V}+(1-\text { alpha })^{*}$ G_regularized
// Update exponentially-averaged historical squared gradient. H_new = beta * $\mathrm{H}+(1-$ beta $)$

* G_regularized * G_regularized
// Compute the element-wise square-root of H_new. V_new will be element-wisely // divided by H_sqrt for a better update direction. H_sqrt $=$ Sqrt(H_new) + epsilon
// Compute learning-rate. Note that "alpha**T"/"beta**T" is alpha's/beta's T-th power. $\mathrm{R} \_$adjusted $=\mathrm{T}>0$ ? $\mathrm{R} * \operatorname{Sqrt}\left(1-\right.$ beta $\left.^{*} * \mathrm{~T}\right) /(1-$ alpha $* * \mathrm{~T}): \mathrm{R}$
// Compute new value of "X". X_new = X - R_adjusted * V_new / H_sqrt
// Post-update regularization. X_final $=(1-$ norm_coefficient_post $) * X \_$new
If there are multiple inputs to be optimized, the pseudo code will be applied independently to each of them.


## Node Inputs

- $\mathbf{R}$ (T1, single) - The initial learning rate.
- T (T2, single) - The update count of " $X$ ". It should be a scalar.
- inputs (T3, variadic) - The tensors to be optimized, followed by their respective gradients, followed by their respective accumulated gradients (aka momentum), followed by their respective accumulated squared gradients. For example, to optimize tensors "X_1" and "X_2,", the input list would be ["X_1", "X_2", gradient of "X_1", gradient of "X_2",
accumulated gradient of "X_1", accumulated gradient of "X_2", accumulated squared gradient of "X_1", accumulated squared gradient of "X_2"].


## Node Outputs

- outputs (T3, variadic) - New values of optimized tensors, followed by their respective new accumulated gradients, followed by their respective new accumulated squared gradients. For example, if two tensors "X_1" and "X_2" are optimized, the outputs list would be [new value of "X_1", new value of "X_2", new accumulated gradient of "X_1", new accumulated gradient of "X_2", new accumulated squared gradient of "X_1", new accumulated squared gradient of "X_2"].


## Type Constraints

- T1 - float 32 , float 64
- T2 - int 64
- T3-float 32 , float 64


## Parameters

- name - the name of the node.
- alpha (Optional [float], default=0.8999999761581421) - Coefficient of previously accumulated gradient in running average. Default to 0.9.
- beta (Optional [float], default=0.9990000128746033) - Coefficient of previously accumulated squared-gradient in running average. Default to 0.999.
- epsilon (Optional [float], default=9.999999974752427e-07) - Small scalar to avoid dividing by zero.
- norm_coefficient (Optional [float], default=0.0) - Regularization coefficient of $0.5 *$ norm_coefficient * $\|\mathrm{X}\| \_2^{\wedge} 2$. Default to 0 , which means no regularization.
- norm_coefficient_post (Optional [float], default=0.0) - Regularization coefficient of 0.5 * norm_coefficient * $\|\mathrm{X}\| \_2^{\wedge} 2$. Default to 0 , which means no regularization.


## alpha

Coefficient of previously accumulated gradient in running average. Default to 0.9.

## beta

Coefficient of previously accumulated squared-gradient in running average. Default to 0.999.
epsilon
Small scalar to avoid dividing by zero.
norm_coefficient
Regularization coefficient of 0.5 * norm_coefficient * $\|\mathrm{X}\| \_2^{\wedge} 2$. Default to 0 , which means no regularization.

```
norm_coefficient_post
```

Regularization coefficient of 0.5 * norm_coefficient $*\|X\| \_2^{\wedge} 2$. Default to 0, which means no regularization.
class ONNXAdd (name, *)
Bases: dacemI.onnx. nodes.onnx_op.ONNXOp
Performs element-wise binary addition (with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

## Node Inputs

- A (T, single) - First operand.
- B (T, single) - Second operand.


## Node Outputs

- $\mathbf{C}$ (T, single) - Result, has same element type as two inputs


## Type Constraints

- T-uint 32, uint 64, int 32, int 64, float16, float 32, float 64

Parameters name - the name of the node.
class ONNXAnd (name, *)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Returns the tensor resulted from performing the and logical operation elementwise on the input tensors $A$ and $B$ (with Numpy-style broadcasting support).

This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

## Node Inputs

- A (T, single) - First input operand for the logical operator.
- B (T, single) - Second input operand for the logical operator.


## Node Outputs

- C (T1, single) - Result tensor.


## Type Constraints

- T-bool_
- T1-bool_

Parameters name - the name of the node.
class ONNXArgMax (name, *, axis=0, keepdims=1, select_last_index=0)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Computes the indices of the max elements of the input tensor's element along the provided axis. The resulting tensor has the same rank as the input if keepdims equal 1 . If keepdims equal 0 , then the resulting tensor have the reduced dimension pruned. If select_last_index is True (default False), the index of the last occurrence of the max is selected if the max appears more than once in the input. Otherwise the index of the first occurrence is selected. The type of the output tensor is integer.

## Node Inputs

- data (T, single) - An input tensor.


## Node Outputs

- reduced (reduced_constraint, single) - Reduced output tensor with integer data type.


## Type Constraints

- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float 64
- reduced_constraint - int 64


## Parameters

- name - the name of the node.
- axis (Optional [int], default=0) - The axis in which to compute the arg indices. Accepted range is $[-\mathrm{r}, \mathrm{r}-1]$ where $\mathrm{r}=\operatorname{rank}($ data $)$.
- keepdims (Optional [int], default=1) - Keep the reduced dimension or not, default 1 mean keep reduced dimension.
- select_last_index (Optional [int], default=0) - Whether to select the last index or the first index if the \{name\} appears in multiple indices, default is False (first index).
axis
The axis in which to compute the arg indices. Accepted range is [-r, r-1] where $r=\operatorname{rank}($ data $)$.


## keepdims

Keep the reduced dimension or not, default 1 mean keep reduced dimension.

## select_last_index

Whether to select the last index or the first index if the \{name\} appears in multiple indices, default is False (first index).
class ONNXArgMin (name, ${ }^{*}$, axis $=0$, keepdims $=1$, select_last_index=0)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Computes the indices of the min elements of the input tensor's element along the provided axis. The resulting tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0 , then the resulting tensor have the reduced dimension pruned. If select_last_index is True (default False), the index of the last occurrence of the min is selected if the min appears more than once in the input. Otherwise the index of the first occurrence is selected. The type of the output tensor is integer.

## Node Inputs

- data (T, single) - An input tensor.


## Node Outputs

- reduced (reduced_constraint, single) - Reduced output tensor with integer data type.


## Type Constraints

- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float 64
- reduced_constraint - int 64


## Parameters

- name - the name of the node.
- axis (Optional [int], default=0) - The axis in which to compute the arg indices. Accepted range is $[-r, r-1]$ where $r=\operatorname{rank}($ data $)$.
- keepdims (Optional [int], default=1) - Keep the reduced dimension or not, default 1 mean keep reduced dimension.
- select_last_index (Optional [int], default=0) - Whether to select the last index or the first index if the \{name\} appears in multiple indices, default is False (first index).
axis
The axis in which to compute the arg indices. Accepted range is $[-r, r-1]$ where $r=\operatorname{rank}($ data $)$.
keepdims
Keep the reduced dimension or not, default 1 mean keep reduced dimension.
select_last_index
Whether to select the last index or the first index if the \{name\} appears in multiple indices, default is False (first index).
class ONNXArrayFeatureExtractor (name, *)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Select elements of the input tensor based on the indices passed.<br> The indices are applied to the last axes of the tensor.


## Node Inputs

- X (T, single) - Data to be selected
- Y (Y_constraint, single) - The indices, based on 0 as the first index of any dimension.


## Node Outputs

- $\mathbf{Z}$ (T, single) - Selected output data as an array


## Type Constraints

- T-float 32 , float 64 , int 64 , int 32
- Y_constraint - int 64

Parameters name - the name of the node.
class ONNXAsin(name, *)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Calculates the arcsine (inverse of sine) of the given input tensor, element-wise.

## Node Inputs

- input (T, single) - Input tensor


## Node Outputs

- output ( T , single) - The arcsine of the input tensor computed element-wise


## Type Constraints

- T-float16, float 32, float 64

Parameters name - the name of the node.
class ONNXAsinh (name, *)
Bases: dacemI. onnx. nodes.onnx_op. ONNXOp
Calculates the hyperbolic arcsine of the given input tensor element-wise.

## Node Inputs

- input ( T, single) - Input tensor


## Node Outputs

- output (T, single) - The hyperbolic arcsine values of the input tensor computed elementwise


## Type Constraints

- T-float16, float32, float 64

Parameters name - the name of the node.

## class ONNXAtan (name, *)

Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Calculates the arctangent (inverse of tangent) of the given input tensor, element-wise.

## Node Inputs

- input ( T , single) - Input tensor


## Node Outputs

- output ( T , single) - The arctangent of the input tensor computed element-wise


## Type Constraints

- T-float16, float 32, float 64

Parameters name - the name of the node.

## class ONNXAtanh (name, *)

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Calculates the hyperbolic arctangent of the given input tensor element-wise.

## Node Inputs

- input ( T , single) - Input tensor


## Node Outputs

- output (T, single) - The hyperbolic arctangent values of the input tensor computed elementwise


## Type Constraints

- T-float16, float 32, float 64

Parameters name - the name of the node.
class ONNXAveragePool (name, *, auto_pad='NOTSET', ceil_mode=0, count_include_pad=0, kernel_shape, pads $=$ None, strides $=$ None )
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
AveragePool consumes an input tensor X and applies average pooling across the tensor according to kernel sizes, stride sizes, and pad lengths. average pooling consisting of computing the average on all values of a subset of the input tensor according to the kernel size and downsampling the data into the output tensor Y for further processing. The output spatial shape will be following: `output_spatial_shape[i] = floor((input_spatial_shape[i] + pad_shape[i] - kernel_spatial_shape[i]) / strides_spatial_shape[i] + 1)` or `output_spatial_shape[i] = ceil((input_spatial_shape[i] + pad_shape[i] - kernel_spatial_shape[i]) / strides_spatial_shape[i] + 1)` if ceil_mode is enabled

* pad_shape[i] is sum of pads along axis i `auto_pad is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following: V VALID: output_spatial_shape[i] = ceil((input_spatial_shape[i] - kernel_spatial_shape[i] + 1) / strides_spatial_shape[i]) SAME_UPPER or SAME_LOWER: output_spatial_shape[i] = ceil(input_spatial_shape[i] / strides_spatial_shape[i])` And pad shape will be following if $S A M E \_U P P E R$ or SAME_LOWER: $\quad$ pad_shape[i] = (output_spatial_shape[i] 1) * strides_spatial_shape[i] + kernel_spatial_shape[i] input_spatial_shape[i] ` The output of each pooling window is divided by the number of elements (exclude pad when attribute count_include_pad is zero).


## Node Inputs

- X (T, single) - Input data tensor from the previous operator; dimensions for image case are ( $\mathrm{N} \times \mathrm{C} \times \mathrm{HxW}$ ), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of ( $\mathrm{N} \times \mathrm{C} \times \mathrm{D} 1 \times \mathrm{D} 2 \ldots \mathrm{Dn}$ ), where N is the batch size. Optionally, if dimension denotation is in effect, the operation expects the input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].


## Node Outputs

- Y (T, single) - Output data tensor from average or max pooling across the input tensor. Dimensions will vary based on various kernel, stride, and pad sizes. Floor value of the dimension is used


## Type Constraints

- T-float16, float 32, float 64


## Parameters

- name - the name of the node.
- auto_pad (Optional [str], default='NOTSET') - auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding.
- ceil_mode (Optional [int], default=0) - Whether to use ceil or floor (default) to compute the output shape.
- count_include_pad (Optional [int], default=0) - Whether include pad pixels when calculating values for the edges. Default is 0 , doesn't count include pad.
- kernel_shape (List [int]) - The size of the kernel along each axis.
- pads (Optional [List [int]], default=None) - Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0 . The value represent the number of pixels added to the beginning and end part of the corresponding axis. pads format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis $i$ and xi_end, the number of pixels added at the end of axis $i$. This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.
- strides (Optional [List [int]], default=None) - Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.


## auto_pad

auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding.

```
ceil_mode
```

Whether to use ceil or floor (default) to compute the output shape.
count_include_pad
Whether include pad pixels when calculating values for the edges. Default is 0 , doesn't count include pad.

## kernel_shape

The size of the kernel along each axis.

## pads

Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0 . The value represent the number of pixels added to the beginning and end part of the corresponding axis. pads format should be as follow [x1_begin, x2_begin...x1_end, $\mathrm{x} 2 \_$end,...], where xi_begin the number of pixels added at the beginning of axis $i$ and xi_end, the number of pixels added at the end of axis $i$. This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.

## strides

Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.
class ONNXBatchNormalization (name, $\quad *, \quad$ epsilon $=9.999999747378752 e-06, \quad$ momentum=0.8999999761581421)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Carries out batch normalization as described in the paper https://arxiv.org/abs/1502.03167. Depending on the mode it is being run, there are multiple cases for the number of outputs, which we list below:
Output case \#1: Y, mean, var, saved_mean, saved_var (training mode) Output case \#2: Y (test mode)
For previous (depreciated) non-spatial cases, implementors are suggested to flatten the input shape to ( N x C*D1*D2 ..*Dn) before a BatchNormalization Op. This operator has optional inputs/outputs. See [the doc](IR.md) for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.

## Node Inputs

- $\mathbf{X}$ (T, single) - Input data tensor from the previous operator; dimensions are in the form of ( N x C x D1 x D2 ... Dn), where N is the batch size, C is the number of channels. Statistics are computed for every channel of C over N and D 1 to Dn dimensions. For image data, input dimensions become ( $\mathrm{N} \times \mathrm{C} \times \mathrm{H} \times \mathrm{W}$ ). The op also accepts single dimension input of size N in which case C is assumed to be 1
- scale (T, single) - Scale tensor of shape (C).
- B (T, single) - Bias tensor of shape (C).
- in_mean (T, single) - running (training) or estimated (testing) mean tensor of shape (C).
- in_var (T, single) - running (training) or estimated (testing) variance tensor of shape (C).


## Node Outputs

- Y (T, single) - The output tensor of the same shape as X
- out_mean (T, optional) - The running mean after the BatchNormalization operator.
- out_var (T, optional) - The running variance after the BatchNormalization operator.
- saved_mean (T, optional) - Saved mean used during training to speed up gradient computation.
- saved_var (T, optional) - Saved variance used during training to speed up gradient computation.


## Type Constraints

- T-float16, float32, float 64


## Parameters

- name - the name of the node.
- epsilon (Opt ional [float], default=9.999999747378752e-06) - The epsilon value to use to avoid division by zero.
- momentum (Optional [float], default=0.8999999761581421) - Factor used in computing the running mean and variance.e.g., running_mean $=$ running_mean $*$ momentum + mean * (1-momentum).


## epsilon

The epsilon value to use to avoid division by zero.
momentum
Factor used in computing the running mean and variance.e.g., running_mean = running_mean $*$ momentum + mean * (1-momentum).
class ONNXBinarizer (name, *, threshold=0.0)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Maps the values of the input tensor to either 0 or 1 , element-wise, based on the outcome of a comparison against a threshold value.

## Node Inputs

- X (T, single) - Data to be binarized


## Node Outputs

- Y (T, single) - Binarized output data


## Type Constraints

- $\mathbf{T}$-float 32 , float 64 , int 64 , int 32


## Parameters

- name - the name of the node.
- threshold (Optional [float], default=0.0) - Values greater than this are mapped to 1 , others to 0 .


## threshold

Values greater than this are mapped to 1 , others to 0 .
class ONNXBitShift (name, *, direction)
Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Bitwise shift operator performs element-wise operation. For each input element, if the attribute "direction" is "RIGHT", this operator moves its binary representation toward the right side so that the input value is effectively decreased. If the attribute "direction" is "LEFT", bits of binary representation moves toward the left side, which results the increase of its actual value. The input X is the tensor to be shifted and another input Y specifies the amounts of shifting. For example, if "direction" is "Right", X is [1, 4], and S is $[1,1]$, the corresponding output Z would be $[0,2]$. If "direction" is "LEFT" with $\mathrm{X}=[1,2]$ and $\mathrm{S}=[1,2]$, the corresponding output Y would be $[2,8]$.

Because this operator supports Numpy-style broadcasting, X's and Y's shapes are not necessarily identical.
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

## Node Inputs

- $\mathbf{X}$ (T, single) - First operand, input to be shifted.
- Y (T, single) - Second operand, amounts of shift.


## Node Outputs

- $\mathbf{Z}$ (T, single) - Output tensor


## Type Constraints

- T-uint 8 , uint16, uint 32 , uint 64


## Parameters

- name - the name of the node.
- direction (str) - Direction of moving bits. It can be either "RIGHT" (for right shift) or "LEFT" (for left shift).


## direction

Direction of moving bits. It can be either "RIGHT" (for right shift) or "LEFT" (for left shift).
class ONNXCast (name, *, to)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
The operator casts the elements of a given input tensor to a data type specified by the 'to' argument and returns an output tensor of the same size in the converted type. The 'to' argument must be one of the data types specified in the 'DataType' enum field in the TensorProto message.

Casting from string tensor in plain (e.g., " 3.14 " and " 1000 ") and scientific numeric representations (e.g., "1e5 " and " 1 E 8 ") to float types is supported. For example, converting string " 100.5 " to an integer may result 100. There are some string literals reserved for special floating-point values; "+INF" (and "INF"), "-INF", and "NaN" are positive infinity, negative infinity, and not-a-number, respectively. Any string which can exactly match " + INF" in a case-insensitive way would be mapped to positive infinite. Similarly, this case-insensitive rule is applied to "INF" and "NaN". When casting from numeric tensors to string tensors, plain floating-point representation (such as " 314.15926 ") would be used. Converting non-numerical-literal string such as "Hello World!" is an undefined behavior. Cases of converting string representing floating-point arithmetic value, such as " 2.718 ", to INT is an undefined behavior.

Conversion from a numerical type to any numerical type is always allowed. User must be aware of precision loss and value change caused by range difference between two types. For example, a 64-bit float 3.1415926459 may be round to a 32 -bit float 3.141592 . Similarly, converting an integer 36 to Boolean may produce 1 because we truncate bits which can't be stored in the targeted type.

## Node Inputs

- input (T1, single) - Input tensor to be cast.


## Node Outputs

- output (T2, single) - Output tensor with the same shape as input with type specified by the 'to' argument


## Type Constraints

- T1 - float16, float32, float64, int8, int16, int32, int64, uint8, uint16, uint32, uint64, bool_
- T2 - float16, float32, float64, int8, int16, int32, int64, uint8, uint16, uint32, uint64, bool_


## Parameters

- name - the name of the node.
- to (int) - The data type to which the elements of the input tensor are cast. Strictly must be one of the types from DataType enum in TensorProto
to
The data type to which the elements of the input tensor are cast. Strictly must be one of the types from DataType enum in TensorProto
class ONNXCategoryMapper (name, *, cats_int64s=None, cats_strings $=$ None, default_int64=- 1 , default_string='_Unused')
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Converts strings to integers and vice versa.<br> Two sequences of equal length are used to map between integers and strings, with strings and integers at the same index detailing the mapping.<br> Each operator converts either integers to strings or strings to integers, depending on which default value attribute is provided. Only one default value attribute should be defined.<br> If the string default value is set, it will convert integers to strings. If the int default value is set, it will convert strings to integers.


## Node Inputs

- X (T1, single) - Input data


## Node Outputs

- Y (T2, single) - Output data. If strings are input, the output values are integers, and vice versa.


## Type Constraints

- T1 - int 64
- T2 - int 64


## Parameters

- name - the name of the node.
- cats_int64s (Optional [List [int]], default=None) - The integers of the map. This sequence must be the same length as the 'cats_strings' sequence.
- cats_strings (Optional [List [str]], default=None) - The strings of the map. This sequence must be the same length as the 'cats_int64s' sequence
- default_int 64 (Opt ional [int], default=-1) - An integer to use when an input string value is not found in the map.<br>One and only one of the 'default_*' attributes must be defined.
- default_string (Optional [str], default='_Unused') - A string to use when an input integer value is not found in the map.<br>One and only one of the 'default_*' attributes must be defined.


## cats_int64s

The integers of the map. This sequence must be the same length as the 'cats_strings' sequence.

```
cats_strings
```

The strings of the map. This sequence must be the same length as the 'cats_int64s' sequence

## default_int64

An integer to use when an input string value is not found in the map.<br>One and only one of the 'default_*' attributes must be defined.

```
default_string
```

A string to use when an input integer value is not found in the map.<br>One and only one of the 'default_*' attributes must be defined.
class ONNXCeil (name, *)
Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Ceil takes one input data ( $\mathrm{Tensor}<\mathrm{T}>$ ) and produces one output data ( $\mathrm{Tensor}<\mathrm{T}\rangle$ ) where the ceil is, $\mathrm{y}=\operatorname{ceil}(\mathrm{x})$, is applied to the tensor elementwise.

## Node Inputs

- $\mathbf{X}$ (T, single) - Input tensor


## Node Outputs

- Y (T, single) - Output tensor


## Type Constraints

- T-float16, float 32 , float 64

Parameters name - the name of the node.
class ONNXCelu (name, *, alpha=1.0)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Continuously Differentiable Exponential Linear Units: Perform the linear unit element-wise on the input tensor X using formula:

```
 max(0,x) + min(0,alpha*(exp(x/alpha) -1))
```


## Node Inputs

- $\mathbf{X}$ (T, single) - Input tensor


## Node Outputs

- Y (T, single) - Output tensor


## Type Constraints

- T-float 32


## Parameters

- name - the name of the node.
- alpha (Optional [float], default=1.0) - The Alpha value in Celu formula which control the shape of the unit. The default value is 1.0.


## alpha

The Alpha value in Celu formula which control the shape of the unit. The default value is 1.0 .
class ONNXClip (name, *)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Clip operator limits the given input within an interval. The interval is specified by the inputs 'min' and 'max'. They default to numeric_limits::lowest() and numeric_limits::max(), respectively.

## Node Inputs

- input (T, single) - Input tensor whose elements to be clipped
- min (T, optional) - Minimum value, under which element is replaced by min. It must be a scalar(tensor of empty shape).
- max (T, optional) - Maximum value, above which element is replaced by max. It must be a scalar(tensor of empty shape).


## Node Outputs

- output (T, single) - Output tensor with clipped input elements


## Type Constraints

- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float 64

Parameters name - the name of the node.
class ONNXCompress (name, *, axis=None)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Selects slices from an input tensor along a given axis where condition evaluates to True for each axis index. In case axis is not provided, input is flattened before elements are selected. Compress behaves like numpy.compress: https://docs.scipy.org/doc/numpy/reference/generated/numpy.compress.html

## Node Inputs

- input ( T, single) - Tensor of rank $\mathrm{r}>=1$.
- condition (T1, single) - Rank 1 tensor of booleans to indicate which slices or data elements to be selected. Its length can be less than the input length along the axis or the flattened input size if axis is not specified. In such cases data slices or elements exceeding the condition length are discarded.


## Node Outputs

- output ( T , single) - Tensor of rank r if axis is specified. Otherwise output is a Tensor of rank 1.


## Type Constraints

- T - uint8, uint16, uint 32, uint64, int8, int16, int32, int64, float16, float 32 , float64, bool_, complex64, complex128
- T1-bool_


## Parameters

- name - the name of the node.
- axis (Optional [int], default=None) - (Optional) Axis along which to take slices. If not specified, input is flattened before elements being selected. Negative value means counting dimensions from the back. Accepted range is $[-r, r-1]$ where $r=\operatorname{rank}(i n p u t)$.
axis
(Optional) Axis along which to take slices. If not specified, input is flattened before elements being selected. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where $r=\operatorname{rank}($ input $)$.
class ONNXConcat (name, *, axis)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Concatenate a list of tensors into a single tensor. All input tensors must have the same shape, except for the dimension size of the axis to concatenate on.


## Node Inputs

- inputs (T, variadic) - List of tensors for concatenation


## Node Outputs

- concat_result (T, single) - Concatenated tensor


## Type Constraints

- T - uint8, uint16, uint 32, uint 64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128


## Parameters

- name - the name of the node.
- axis (int) - Which axis to concat on. A negative value means counting dimensions from the back. Accepted range is [-r, $\mathrm{r}-1]$ where $\mathrm{r}=\mathrm{rank}$ (inputs)..


## axis

Which axis to concat on. A negative value means counting dimensions from the back. Accepted range is [-r, r-1] where $r=\operatorname{rank}($ inputs)..
class ONNXConstant (name, *, sparse_value=None, value=None, value_float=None, value_floats=None, value_int=None, value_ints=None, value_string=None, value_strings=None)
Bases: daceml.onnx.nódes.onnx_op.ONNXOp
This operator produces a constant tensor. Exactly one of the provided attributes, either value, sparse_value, or value_* must be specified.

## Node Inputs

## Node Outputs

- output ( T , single) - Output tensor containing the same value of the provided tensor.


## Type Constraints

```
- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float64, bool_, complex64, complex128
```


## Parameters

- name - the name of the node.
- value (Optional [numpy.ndarray], default=None) - The value for the elements of the output tensor.
- value_float (Optional [float], default=None) - The value for the sole element for the scalar, float32, output tensor.
- value_floats (Optional [List [float]], default=None) - The values for the elements for the 1D, float32, output tensor.
- value_int (Optional [int], default=None) - The value for the sole element for the scalar, int64, output tensor.
- value_ints (Optional [List [int]], default=None) - The values for the elements for the 1D, int64, output tensor.
- value_string (Optional [str], default=None) - The value for the sole element for the scalar, UTF-8 string, output tensor.
- value_strings (Optional [List [str]], default=None) - The values for the elements for the 1D, UTF-8 string, output tensor.
value
The value for the elements of the output tensor.
value_float
The value for the sole element for the scalar, float32, output tensor.
value_floats
The values for the elements for the 1D, float32, output tensor.


## value_int

The value for the sole element for the scalar, int64, output tensor.

## value_ints

The values for the elements for the 1D, int64, output tensor.
value_string
The value for the sole element for the scalar, UTF-8 string, output tensor.

## value_strings

The values for the elements for the 1D, UTF-8 string, output tensor.

## class ONNXConstantOfShape (name, *, value $=$ None)

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Generate a tensor with given value and shape.

## Node Inputs

- input (T1, single) - 1D tensor. The shape of the expected output tensor. If empty tensor is given, the output would be a scalar. All values must be $>=0$.


## Node Outputs

- output (T2, single) - Output tensor of shape specified by 'input'.If attribute 'value' is specified, the value and datatype of the output tensor is taken from 'value'.If attribute 'value' is not specified, the value in the output defaults to 0 , and the datatype defaults to float 32 .


## Type Constraints

- T1 - int 64
- T2 - float16, float 32, float64, int8, int16, int32, int64, uint8, uint16, uint32, uint64, bool_


## Parameters

- name - the name of the node.
- value (Optional [numpy.ndarray], default=None) - (Optional) The value of the output elements.Should be a one-element tensor. If not specified, it defaults to a tensor of value 0 and datatype float 32
value
(Optional) The value of the output elements.Should be a one-element tensor. If not specified, it defaults to a tensor of value 0 and datatype float 32
class ONNXConv (name, *, auto_pad='NOTSET', dilations=None, group=1, kernel_shape=None, pads $=$ None, strides $=$ None)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
The convolution operator consumes an input tensor and a filter, and computes the output.


## Node Inputs

- $\mathbf{X}$ ( $T$, single) - Input data tensor from previous layer; has size ( $\mathrm{N} \times \mathrm{C} \times \mathrm{H} \times \mathrm{W}$ ), where N is the batch size, C is the number of channels, and H and W are the height and width. Note that this is for the 2D image. Otherwise the size is ( $\mathrm{N} \times \mathrm{C} \times \mathrm{D} 1 \times \mathrm{D} 2 \ldots \times \mathrm{Dn}$ ). Optionally, if dimension denotation is in effect, the operation expects input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].
- W ( T , single) - The weight tensor that will be used in the convolutions; has size ( M $x \mathrm{C}$ /group $\mathrm{xkH} \times \mathrm{kW}$ ), where C is the number of channels, and kH and kW are the height and width of the kernel, and M is the number of feature maps. For more than

2 dimensions, the kernel shape will be ( $\mathrm{M} \times \mathrm{C} /$ group $\mathrm{xk} \mathrm{k} \times \mathrm{k} 2 \mathrm{x} \ldots \mathrm{x} \mathrm{kn}$ ), where ( $\mathrm{k} 1 \mathrm{xk} 2 \mathrm{x} \ldots \mathrm{kn}$ ) is the dimension of the kernel. Optionally, if dimension denotation is in effect, the operation expects the weight tensor to arrive with the dimension denotation of [FILTER_OUT_CHANNEL, FILTER_IN_CHANNEL, FILTER_SPATIAL, FILTER_SPATIAL ...]. X.shape[1] $==$ (W.shape[1] $*$ group) $==$ C (assuming zero based indices for the shape array). Or in other words FILTER_IN_CHANNEL should be equal to DATA_CHANNEL.

- B (T, optional) - Optional 1D bias to be added to the convolution, has size of M.


## Node Outputs

- Y (T, single) - Output data tensor that contains the result of the convolution. The output dimensions are functions of the kernel size, stride size, and pad lengths.


## Type Constraints

- T-float16, float 32 , float 64


## Parameters

- name - the name of the node.
- auto_pad (Optional [str], default='NOTSET') - auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding.
- dilations (Optional [List [int]], default=None) - dilation value along each spatial axis of the filter. If not present, the dilation defaults is 1 along each spatial axis.
- group (Optional [int], default=1) - number of groups input channels and output channels are divided into.
- kernel_shape (Optional [List [int]], default=None) - The shape of the convolution kernel. If not present, should be inferred from input W .
- pads (Optional [List [int]], default=None) - Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0 . The value represent the number of pixels added to the beginning and end part of the corresponding axis. pads format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis $i$ and xi_end, the number of pixels added at the end of axis $i$. This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.
- strides (Optional [List [int]], default=None) - Stride along each spatial axis. If not present, the stride defaults is 1 along each spatial axis.


## auto_pad

auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding.

## dilations

dilation value along each spatial axis of the filter. If not present, the dilation defaults is 1 along each spatial axis.
group
number of groups input channels and output channels are divided into.

## kernel_shape

The shape of the convolution kernel. If not present, should be inferred from input W .

## pads

Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0 . The value represent the number of pixels added to the beginning and end part of the corresponding axis. pads format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis $i$ and xi_end, the number of pixels added at the end of axis $i$. This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.

## strides

Stride along each spatial axis. If not present, the stride defaults is 1 along each spatial axis.

```
class ONNXConvInteger(name, *, auto_pad='NOTSET', dilations=None, group=l, ker-
 nel_shape=None, pads=None, strides=None)
 Bases: daceml.onnx.nodes.onnx_op.ONNXOp
```

The integer convolution operator consumes an input tensor, its zero-point, a filter, and its zero-point, and computes the output. The production MUST never overflow. The accumulation may overflow if and only if in 32 bits.

## Node Inputs

- $\mathbf{x}$ (T1, single) - Input data tensor from previous layer; has size ( $\mathrm{N} \times \mathrm{C} \times \mathrm{H} \times \mathrm{W}$ ), where N is the batch size, C is the number of channels, and H and W are the height and width. Note that this is for the 2D image. Otherwise the size is ( $\mathrm{N} \times \mathrm{C} \times \mathrm{D} 1 \times \mathrm{D} 2 \ldots \times \mathrm{Dn}$ ). Optionally, if dimension denotation is in effect, the operation expects input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].
- w (T2, single) - The weight tensor that will be used in the convolutions; has size (M x C/group $\mathrm{xkH} \times \mathrm{kW}$ ), where C is the number of channels, and kH and kW are the height and width of the kernel, and M is the number of feature maps. For more than 2 dimensions, the kernel shape will be ( $\mathrm{M} \times \mathrm{C} /$ group xk k x2 $\mathrm{x} \ldots \mathrm{x} \mathrm{kn}$ ), where ( $\mathrm{k} 1 \times \mathrm{k} 2 \times \ldots \mathrm{kn}$ ) is the dimension of the kernel. Optionally, if dimension denotation is in effect, the operation expects the weight tensor to arrive with the dimension denotation of [FILTER_OUT_CHANNEL, FILTER_IN_CHANNEL, FILTER_SPATIAL, FILTER_SPATIAL ...]. X.shape[1] == (W.shape[1] * group) == C (assuming zero based indices for the shape array). Or in other words FILTER_IN_CHANNEL should be equal to DATA_CHANNEL.
- x_zero_point (T1, optional) - Zero point tensor for input ' $x$ '. It's optional and default value is 0 . It's a scalar, which means a per-tensor/layer quantization.
- w_zero_point (T2, optional) - Zero point tensor for input 'w'. It's optional and default value is 0 . It could be a scalar or a 1-D tensor, which means a per-tensor/layer or per output channel quantization. If it's a 1-D tensor, its number of elements should be equal to the number of output channels (M)


## Node Outputs

- $\mathbf{y}$ (T3, single) - Output data tensor that contains the result of the convolution. The output dimensions are functions of the kernel size, stride size, and pad lengths.


## Type Constraints

- T1 - int 8 , uint 8
- T2 - int $8, u$ int 8
- T3 - int 32


## Parameters

- name - the name of the node.
- auto_pad (Optional [str], default='NOTSET') - auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding.
- dilations (Opt ional [List [int]], default=None) - dilation value along each spatial axis of the filter. If not present, the dilation defaults to 1 along each axis.
- group (Opt ional [int], default=1) - number of groups input channels and output channels are divided into. default is 1 .
- kernel_shape (Optional [List [int]], default=None) - The shape of the convolution kernel. If not present, should be inferred from input ' $w$ '.
- pads (Optional [List [int]], default=None) - Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0 .The value represent the number of pixels added to the beginning and end part of the corresponding axis.'pads` format should be as follow [x1_begin, x2_begin. . . x1_end, x2_end,...], where xi_begin the number ofpixels added at the beginning of axis $i$ and xi_end, the number of pixels added at the end of axis $i$.This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaultsto 0 along start and end of each spatial axis.
- strides (Optional [List [int]], default=None) - Stride along each spatial axis. If not present, the stride defaults to 1 along each axis.


## auto_pad

auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding.

## dilations

dilation value along each spatial axis of the filter. If not present, the dilation defaults to 1 along each axis.

## group

number of groups input channels and output channels are divided into. default is 1 .

## kernel_shape

The shape of the convolution kernel. If not present, should be inferred from input ' $w$ '.

## pads

Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0. The value represent the number of pixels added to the beginning and end part of the corresponding axis.'pads` format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number ofpixels added at the beginning of axis $i$ and xi_end, the number of pixels added at the end of axis $i$.This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaultsto 0 along start and end of each spatial axis.

## strides

Stride along each spatial axis. If not present, the stride defaults to 1 along each axis.
class ONNXConvTranspose (name, *, auto_pad='NOTSET', dilations=None, group=1, kernel_shape $=$ None, $\quad$ output_padding $=$ None, output_shape $=$ None, pads=None, strides=None)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp

The convolution transpose operator consumes an input tensor and a filter, and computes the output.
If the pads parameter is provided the shape of the output is calculated via the following equation:
output_shape[i] $=$ stride[i] $*($ input_size[i] -1$)+$ output_padding[i] $+(($ kernel_shape[i] -1$) *$ dilations[i] + 1) - pads[start_i] - pads[end_i]
output_shape can also be explicitly specified in which case pads values are auto generated using these equations:
total_padding[i] $=\operatorname{stride}[\mathrm{i}] *($ input_size[i] - 1) + output_padding[i] + ((kernel_shape[i] - 1) $*$ dilations[i] + 1) - output_shape[i] If (auto_pads != SAME_UPPER): pads[start_i] = total_padding[i]/2; pads[end_i] = total_padding[i] - (total_padding[i]/2) Else: pads[start_i] = total_padding[i] - (total_padding[i]/2); pads[end_i] = (total_padding[i]/2).

## Node Inputs

- $\mathbf{X}$ ( T , single) - Input data tensor from previous layer; has size ( $\mathrm{N} \times \mathrm{C} \times \mathrm{H} \times \mathrm{W}$ ), where N is the batch size, C is the number of channels, and H and W are the height and width. Note that this is for the 2D image. Otherwise the size is ( $\mathrm{N} \times \mathrm{C} \times \mathrm{D} 1 \times \mathrm{D} 2 \ldots \times \mathrm{Dn}$ )
- $\mathbf{W}$ (T, single) - The weight tensor that will be used in the convolutions; has size (C x $\mathrm{M} /$ group $\mathrm{x} \mathrm{kH} \times \mathrm{kW}$ ), where C is the number of channels, and kH and kW are the height and width of the kernel, and $M$ is the number of feature maps. For more than 2 dimensions, the weight shape will be ( $\mathrm{C} \times \mathrm{M} /$ group $\mathrm{xk} 1 \mathrm{xk} 2 \mathrm{x} \ldots \mathrm{xkn}$ ), where ( $\mathrm{k} 1 \mathrm{xk} 2 \mathrm{x} \ldots \mathrm{xkn}$ ) is the dimension of the kernel. The number of channels in the output should be equal to W.shape[1] * group (assuming zero based indices of the shape array)
- B (T, optional) - Optional 1D bias to be added to the convolution, has size of M.


## Node Outputs

- Y (T, single) - Output data tensor that contains the result of the convolution. The output dimensions are functions of the kernel size, stride size, pad lengths and group count. The number of channels in the output should be equal to W.shape[1] * group (assuming zero based indices of the shape array)


## Type Constraints

- T-float16, float 32 , float 64


## Parameters

- name - the name of the node.
- auto_pad (Optional [str], default='NOTSET') - auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding.
- dilations (Optional [List [int]], default=None) - dilation value along each spatial axis of the filter. If not present, the dilation defaults to 1 along each spatial axis.
- group (Optional [int], default=1) - number of groups input channels and output channels are divided into.
- kernel_shape (Optional [List [int]], default=None) - The shape of the convolution kernel. If not present, should be inferred from input W .
- output_padding (Optional [List [int]], default=None) - Additional elements added to the side with higher coordinate indices in the output. Each padding value in "output_padding" must be less than the corresponding stride/dilation dimension. By default,
this attribute is a zero vector. Note that this attribute doesn't directly affect the computed output values. It only controls the selection of the computed values, so changing this attribute only adds or removes output elements. If "output_shape" is explicitly provided, "output_padding" does not contribute additional size to "output_shape" but participates in the computation of the needed padding amount. This is also called adjs or adjustment in some frameworks.
- output_shape (Optional [List [int]], default=None) - The shape of the output can be explicitly set which will cause pads values to be auto generated. If output_shape is specified pads values are ignored. See doc for details for equations to generate pads
- pads (Optional [List [int]], default=None) - Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0 . The value represent the number of pixels added to the beginning and end part of the corresponding axis. pads format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis $i$ and xi_end, the number of pixels added at the end of axis $i$. This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.
- strides (Optional [List [int]], default=None) - Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.


## auto_pad

auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding.

## dilations

dilation value along each spatial axis of the filter. If not present, the dilation defaults to 1 along each spatial axis.

## group

number of groups input channels and output channels are divided into.

## kernel_shape

The shape of the convolution kernel. If not present, should be inferred from input W.

## output_padding

Additional elements added to the side with higher coordinate indices in the output. Each padding value in "output_padding" must be less than the corresponding stride/dilation dimension. By default, this attribute is a zero vector. Note that this attribute doesn't directly affect the computed output values. It only controls the selection of the computed values, so changing this attribute only adds or removes output elements. If "output_shape" is explicitly provided, "output_padding" does not contribute additional size to "output_shape" but participates in the computation of the needed padding amount. This is also called adjs or adjustment in some frameworks.

```
output_shape
```

The shape of the output can be explicitly set which will cause pads values to be auto generated. If output_shape is specified pads values are ignored. See doc for details for equations to generate pads

## pads

Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0 . The value represent the number of pixels added to the beginning and end part of the corresponding axis. pads format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis $i$ and xi_end, the number of pixels added at the end of axis $i$. This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.

## strides

Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.
class ONNXCos (name, *)
Bases: dacemI.onnx. nodes.onnx_op.ONNXOp
Calculates the cosine of the given input tensor, element-wise.

## Node Inputs

- input (T, single) - Input tensor


## Node Outputs

- output (T, single) - The cosine of the input tensor computed element-wise


## Type Constraints

- T-float16, float 32, float 64

Parameters name - the name of the node.
class ONNXCosh (name, *)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Calculates the hyperbolic cosine of the given input tensor element-wise.

## Node Inputs

- input ( T , single) - Input tensor


## Node Outputs

- output (T, single) - The hyperbolic cosine values of the input tensor computed element-wise


## Type Constraints

- T-float16, float 32 , float 64

Parameters name - the name of the node.

```
class ONNXCumSum(name, *, exclusive =0, reverse =0)
```

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Performs cumulative sum of the input elements along the given axis. By default, it will do the sum inclusively meaning the first element is copied as is. Through an exclusive attribute, this behavior can change to exclude the first element. It can also perform summation in the opposite direction of the axis. For that, set reverse attribute to 1.

Example: ` input_x $=[1,2,3]$ axis $=0$ output $=[1,3,6]$ exclusive=1 output $=[0,1,3]$ exclusive=0 reverse=1 output $=[6,5,3]$ exclusive=1 reverse=1 output $=[5,3,0]$

## Node Inputs

- $\mathbf{x}$ (T, single) - An input tensor that is to be processed.
- axis (T2, single) - (Optional) A 0-D tensor. Must be in the range [-rank(x), $\operatorname{rank}(x)-1]$. Negative value means counting dimensions from the back.


## Node Outputs

- $\mathbf{y}$ (T, single) - Output tensor of the same type as ' $x$ ' with cumulative sums of the $x$ 's elements


## Type Constraints

- T-uint 32 , uint 64 , int 32 , int 64 , float 32 , float 64
- T2 - int 32 , int 64


## Parameters

- name - the name of the node.
- exclusive (Optional [int], default=0) - If set to 1 will return exclusive sum in which the top element is not included. In other terms, if set to 1 , the j -th output element would be the sum of the first ( $\mathrm{j}-1$ ) elements. Otherwise, it would be the sum of the first j elements.
- reverse (Optional [int], default=0) - If set to 1 will perform the sums in reverse direction.


## exclusive

If set to 1 will return exclusive sum in which the top element is not included. In other terms, if set to 1 , the $j$-th output element would be the sum of the first $(\mathrm{j}-1)$ elements. Otherwise, it would be the sum of the first j elements.

## reverse

If set to 1 will perform the sums in reverse direction.
class ONNXDepthToSpace (name, *, blocksize, mode $=$ ' $D C R^{\prime}$ )
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
DepthToSpace rearranges (permutes) data from depth into blocks of spatial data. This is the reverse transformation of SpaceToDepth. More specifically, this op outputs a copy of the input tensor where values from the depth dimension are moved in spatial blocks to the height and width dimensions. By default, mode $=D C R$. In the DCR mode, elements along the depth dimension from the input tensor are rearranged in the following order: depth, column, and then row. The output y is computed from the input x as below:
$\mathrm{b}, \mathrm{c}, \mathrm{h}, \mathrm{w}=\mathrm{x}$.shape
tmp $=$ np.reshape $\left(x,\left[b\right.\right.$, blocksize, blocksize, $\mathrm{c} / /\left(\right.$ blocksize $\left.\left.\left.^{* *} 2\right), \mathrm{h}, \mathrm{w}\right]\right)$
$\operatorname{tmp}=n p . \operatorname{transpose}(\mathrm{tmp},[0,3,4,1,5,2])$
$\mathrm{y}=$ np.reshape (tmp, $\left[\mathrm{b}, \mathrm{c} / /\left(\right.\right.$ blocksize $\left.{ }^{* * 2}\right), \mathrm{h} *$ blocksize, $\mathrm{w} *$ blocksize $\left.]\right)$
In the CRD mode, elements along the depth dimension from the input tensor are rearranged in the following order: column, row, and the depth. The output y is computed from the input x as below:
$\mathrm{b}, \mathrm{c}, \mathrm{h}, \mathrm{w}=\mathrm{x}$.shape
$\operatorname{tmp}=$ np.reshape $\left(\mathrm{x},\left[\mathrm{b}, \mathrm{c} / /\left(\right.\right.\right.$ blocksize $\left.{ }^{* *} 2\right)$, blocksize, blocksize, $\left.\left.\mathrm{h}, \mathrm{w}\right]\right)$
$\operatorname{tmp}=n p . t r a n s p o s e(t m p,[0,1,4,2,5,3])$
$\mathrm{y}=$ np.reshape $(\mathrm{tmp},[\mathrm{b}, \mathrm{c} / /($ blocksize $* * 2), \mathrm{h} *$ blocksize, $\mathrm{w} *$ blocksize $])$

## Node Inputs

- input ( T , single) - Input tensor of [ $\mathrm{N}, \mathrm{C}, \mathrm{H}, \mathrm{W}$ ], where N is the batch axis, C is the channel or depth, H is the height and W is the width.


## Node Outputs

- output (T, single) - Output tensor of $\left[\mathrm{N}, \mathrm{C} /(\right.$ blocksize $*$ blocksize $), \mathrm{H}^{*}$ blocksize, W * blocksize].


## Type Constraints

- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128


## Parameters

- name - the name of the node.
- blocksize (int) - Blocks of [blocksize, blocksize] are moved.
- mode (Optional [str], default='DCR') - DCR (default) for depth-column-row order re-arrangement. Use CRD for column-row-depth order.


## blocksize

Blocks of [blocksize, blocksize] are moved.
mode
DCR (default) for depth-column-row order re-arrangement. Use CRD for column-row-depth order.

## class ONNXDequantizeLinear (name, *)

Bases: daceml.onnx.nodes.onnx_op.ONNXOp
The linear dequantization operator. It consumes a quantized tensor, a scale, a zero point to compute the full precision tensor. The dequantization formula is $\mathrm{y}=\left(\mathrm{x}-\mathrm{x} \_\right.$zero_point $)$* $\mathrm{x} \_$scale. ' $\mathrm{x} \_$scale' and ' $\mathrm{x} \_$zero_point' must have same shape. ' $x$ _zero_point' and ' $x$ ' must have same type. ' $x$ ' and ' $y$ ' must have same shape. In the case of dequantizing int 32 , there's no zero point (zero point is supposed to be 0 ).

## Node Inputs

- $\mathbf{x}$ (T, single) - N-D quantized input tensor to be de-quantized.
- x_scale (x_scale_constraint, single) - Scale for input 'x'. It's a scalar, which means a pertensor/layer quantization.
- x_zero_point (T, optional) - Zero point for input ' $x$ '. It's a scalar, which means a pertensor/layer quantization. It's optional. 0 is the default value when it's not specified.


## Node Outputs

- $\mathbf{y}$ ( y _constraint, single) - N-D full precision output tensor. It has same shape as input ' x '.


## Type Constraints

- T-int8, uint 8 , int 32
- x_scale_constraint - float 32
- y_constraint - float 32

Parameters name - the name of the node.

## class ONNXDet (name, *)

Bases: dacemI.onnx. nodes.onnx_op. ONNXOp
Det calculates determinant of a square matrix or batches of square matrices. Det takes one input tensor of shape $\left[{ }^{*}, M, M\right]$, where $*$ is zero or more batch dimensions, and the inner-most 2 dimensions form square matrices. The output is a tensor of shape [ ${ }^{*}$ ], containing the determinants of all input submatrices. e.g., When the input is 2-D, the output is a scalar(shape is empty: []).

## Node Inputs

- $\mathbf{X}$ (T, single) - Input tensor


## Node Outputs

- Y (T, single) - Output tensor


## Type Constraints

$$
\text { - } \mathbf{T}-\text { float } 16, \text { float } 32, \text { float } 64
$$

Parameters name - the name of the node.

## class ONNXDiv (name, *)

Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Performs element-wise binary division (with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

## Node Inputs

- A (T, single) - First operand.
- B (T, single) - Second operand.


## Node Outputs

- C (T, single) - Result, has same element type as two inputs


## Type Constraints

```
-T-uint 32,uint64, int 32, int64,float16, float 32, float64
```

Parameters name - the name of the node.

```
class ONNXDropout (name, *, seed=None)
```

Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Dropout takes an input floating-point tensor, an optional input ratio (floating-point scalar) and an optional input training_mode (boolean scalar). It produces two tensor outputs, output (floating-point tensor) and mask (optional Tensor<bool>). If training_mode is true then the output Y will be a random dropout; Note that this Dropout scales the masked input data by the following equation, so to convert the trained model into inference mode, the user can simply not pass training_mode input or set it to false. ${ }^{\text {. output }=\text { scale * data * }}$ mask, ` where` scale = 1. / (1. - ratio). ` This operator has optional inputs/outputs. See [the doc](IR.md) for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.

## Node Inputs

- data ( T , single) - The input data as Tensor.
- ratio (T1, optional) - The ratio of random dropout, with value in [0, 1). If this input was not set, or if it was set to 0 , the output would be a simple copy of the input. If it's nonzero, output will be a random dropout of the scaled input, which is typically the case during training. It is an optional value, if not specified it will default to 0.5 .
- training_mode (T2, optional) - If set to true then it indicates dropout is being used for training. It is an optional value hence unless specified explicitly, it is false. If it is false, ratio is ignored and the operation mimics inference mode where nothing will be dropped from the input data and if mask is requested as output it will contain all ones.


## Node Outputs

- output (T, single) - The output.
- mask (T2, optional) - The output mask.


## Type Constraints

- T-float16, float 32 , float 64
- T1 - float16, float 32, float 64
- T2-bool_


## Parameters

- name - the name of the node.
- seed (Optional [int], default=None) - (Optional) Seed to the random generator, if not specified we will auto generate one.
seed
(Optional) Seed to the random generator, if not specified we will auto generate one.
class ONNXDynamicQuantizeLinear (name, *)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
A Function to fuse calculation for Scale, Zero Point and FP32->8Bit convertion of FP32 Input data. Outputs Scale, ZeroPoint and Quantized Input for a given FP32 Input. Scale is calculated as: "'
$y_{\_}$scale $=(\max (x)-\min (\mathrm{x})) /(\mathrm{qmax}-\mathrm{qmin}) *$ where qmax and qmin are $\max$ and min values for quantization range .i.e $[0,255]$ in case of uint $8 *$ data range is adjusted to include 0 .
Zero point is calculated as: - intermediate_zero_point $=$ qmin $-\min (x) / y \_$scale y_zero_point $=$ cast(round(saturate(itermediate_zero_point))) $*$ where qmax and qmin are max and min values for quantization range .i.e [ 0,255 ] in case of uint8 * for saturation, it saturates to [0,255] if it's uint8, or [-127, 127] if it's int8. Right now only uint8 is supported. * rounding to nearest ties to even. Data quantization formula is: ` $y=$ saturate (round (x/y_scale) $+y$ _zero_point) $*$ for saturation, it saturates to [0,255] if it's uint8, or [-127, 127] if it's int8. Right now only uint8 is supported. * rounding to nearest ties to even.


## Node Inputs

- $\mathbf{x}$ (T1, single) - Input tensor


## Node Outputs

- $\mathbf{y}$ (T2, single) - Quantized output tensor
- y_scale (y_scale_constraint, single) - Output scale. It's a scalar, which means a pertensor/layer quantization.
- y_zero_point (T2, single) - Output zero point. It's a scalar, which means a per-tensor/layer quantization.


## Type Constraints

- T1 - float 32
- $\mathbf{T 2}$-uint 8
- y_scale_constraint - float 32

Parameters name - the name of the node.
class ONNXEinsum (name, *, equation)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
An einsum of the form `term1, term2 -> output-term` produces an output tensor using the following equation

```
`output[output-term] = reduce-sum(input1[term1] * input2[term])`
```

where the reduce-sum performs a summation over all the indices occurring in in the input terms (term1, term2) that do not occur in the output-term.
The Einsum operator evaluates algebraic tensor operations on a sequence of tensors, using the Einstein summation convention. The equation string contains a comma-separated sequence of lower case letters. Each term corresponds to an operand tensor, and the characters within the terms correspond to operands dimensions.

This sequence may be followed by "->" to separate the left and right hand side of the equation. If the equation contains "->" followed by the right-hand side, the explicit (not classical) form of the Einstein summation is performed, and the right-hand side indices indicate output tensor dimensions. In other cases, output indices are (implicitly) set to the alphabetically sorted sequence of indices appearing exactly once in the equation.
When a dimension character is repeated in the left-hand side, it represents summation along the dimension.
The equation may contain ellipsis ("...") to enable broadcasting. Ellipsis must indicate a fixed number of dimensions. Specifically, every occurrence of ellipsis in the equation must represent the same number of dimensions. The right-hand side may contain exactly one ellipsis. In implicit mode, the ellipsis dimensions are set to the beginning of the output. The equation string may contain space $(\mathrm{U}+0020)$ character.

## Node Inputs

- Inputs (T, variadic) - Operands


## Node Outputs

- Output (T, single) - Output tensor


## Type Constraints

- T - uint8, uint16, uint 32, uint64, int8, int16, int32, int64, float16, float 32 , float 64


## Parameters

- name - the name of the node.
- equation (str) - Einsum expression string.
equation
Einsum expression string.
class ONNXElu (name, *, alpha=1.0)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Elu takes one input data (Tensor $<\mathrm{T}>$ ) and produces one output data (Tensor $<\mathrm{T}>$ ) where the function $f(x)=$ alpha * $(\exp (x)-1$.) for $x<0, f(x)=x$ for $x>=0$., is applied to the tensor elementwise.


## Node Inputs

- $\mathbf{X}$ (T, single) - 1D input tensor


## Node Outputs

- $\mathbf{Y}(\mathrm{T}$, single $)-1 \mathrm{D}$ input tensor


## Type Constraints

- T-float16, float 32 , float 64


## Parameters

- name - the name of the node.
- alpha (Optional [float], default=1.0) - Coefficient of ELU.
alpha
Coefficient of ELU.
class ONNXEqual (name, *)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Returns the tensor resulted from performing the equal logical operation elementwise on the input tensors $A$ and $B$ (with Numpy-style broadcasting support).

This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

## Node Inputs

- A (T, single) - First input operand for the logical operator.
- B (T, single) - Second input operand for the logical operator.


## Node Outputs

- $\mathbf{C}$ (T1, single) - Result tensor.


## Type Constraints

- T - bool_, uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float 64
- T1 - bool_

Parameters name - the name of the node.
class ONNXErf(name, *)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Computes the error function of the given input tensor element-wise.

## Node Inputs

- input (T, single) - Input tensor


## Node Outputs

- output (T, single) - The error function of the input tensor computed element-wise. It has the same shape and type of the input.


## Type Constraints

- $\mathbf{T}$ - uint 8 , uint16, uint 32 , uint 64 , int 8 , int16, int 32 , int 64 , float16,
float 32 , float 64

Parameters name - the name of the node.

## class ONNXExp (name, *)

Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Calculates the exponential of the given input tensor, element-wise.

## Node Inputs

- input (T, single) - Input tensor


## Node Outputs

- output (T, single) - The exponential of the input tensor computed element-wise


## Type Constraints

- T-float16, float 32, float64

Parameters name - the name of the node.
class ONNXExpand (name, *)
Bases: dacemI.onnx.nodes.onnx_op.ONNXOp
Broadcast the input tensor following the given shape and the broadcast rule. The broadcast rule is similar to numpy.array(input) * numpy.ones(shape): Dimensions are right alignment; Two corresponding dimension must have the same value, or one of them is equal to 1 . Also, this operator is similar to numpy.broadcast_to(input,
shape), but the major difference is numpy.broadcast_to() does not allow shape to be smaller than input.size(). It is possible that the output.shape is not equal to shape, when some dimensions in shape is equal to 1 , or the shape.ndim < input.shape.ndim.

## Node Inputs

- input (T, single) - Input tensor
- shape (shape_constraint, single) - A 1-D tensor indicates the shape you want to expand to, following the broadcast rule


## Node Outputs

- output (T, single) - Output tensor


## Type Constraints

- T - uint8, uint16, uint 32, uint 64, int8, int16, int 32, int64, float16, float 32 , float64, bool_, complex64, complex128
- shape_constraint - int 64

Parameters name - the name of the node.
class ONNXEyeLike (name, ${ }^{*}$, dtype $=$ None, $k=0$ )
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Generate a 2D tensor (matrix) with ones on the diagonal and zeros everywhere else. Only 2D tensors are supported, i.e. input T1 must be of rank 2. The shape of the output tensor is the same as the input tensor. The data type can be specified by the 'dtype' argument. If 'dtype' is not specified, then the type of input tensor is used. By default, the main diagonal is populated with ones, but attribute ' $k$ ' can be used to populate upper or lower diagonals. The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the TensorProto message and be valid as an output type.

## Node Inputs

- input (T1, single) - 2D input tensor to copy shape, and optionally, type information from.


## Node Outputs

- output (T2, single) - Output tensor, same shape as input tensor T1.


## Type Constraints

- T1 - float16, float32, float64, int8, int16, int32, int64, uint8, uint16, uint32, uint64, bool_
- T2 - float16, float32, float64, int8, int16, int32, int64, uint8, uint16, uint32, uint64, bool_


## Parameters

- name - the name of the node.
- dtype (Optional [int], default=None) - (Optional) The data type for the elements of the output tensor. If not specified,the data type of the input tensor T1 is used. If input tensor T1 is also notspecified, then type defaults to 'float'.
- $\mathbf{k}$ (Optional [int], default=0) - (Optional) Index of the diagonal to be populated with ones. Default is 0 . If T 2 is the output, this op sets $\mathrm{T} 2[\mathrm{i}, \mathrm{i}+\mathrm{k}]=1 . \mathrm{k}=0$ populates the main diagonal, $\mathrm{k}>0$ populates an upper diagonal, and $\mathrm{k}<0$ populates a lower diagonal.


## dtype

(Optional) The data type for the elements of the output tensor. If not specified, the data type of the input tensor T1 is used. If input tensor T1 is also notspecified, then type defaults to 'float'.
k
(Optional) Index of the diagonal to be populated with ones. Default is 0 . If T 2 is the output, this op sets $\mathrm{T} 2[\mathrm{i}, \mathrm{i}+\mathrm{k}]=1 . \mathrm{k}=0$ populates the main diagonal, $\mathrm{k}>0$ populates an upper diagonal, and $\mathrm{k}<0$ populates a lower diagonal.
class ONNXFeatureVectorizer (name, *, inputdimensions=None)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Concatenates input tensors into one continuous output.<br>All input shapes are 2-D and are concatenated along the second dimention. 1-D tensors are treated as [1,C]. Inputs are copied to the output maintaining the order of the input arguments.<br> All inputs must be integers or floats, while the output will be all floating point values.

## Node Inputs

- $\mathbf{X}$ (T1, variadic) - An ordered collection of tensors, all with the same element type.


## Node Outputs

- Y (Y_constraint, single) - The output array, elements ordered as the inputs.


## Type Constraints

- T1 - int 32 , int 64 , float 32 , float 64
- Y_constraint - float 32


## Parameters

- name - the name of the node.
- inputdimensions (Optional [List [int]], default=None) - The size of each input in the input list


## inputdimensions

The size of each input in the input list

## class ONNXFlatten (name, *, axis=1)

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Flattens the input tensor into a 2D matrix. If input tensor has shape ( $d \_0, d_{-} 1, \ldots d_{-}$) then the output will have shape (d_0 X d_1 ... d_(axis-1), d_axis X d_(axis+1) ... X dn).

## Node Inputs

- input ( T , single) - A tensor of rank $>=$ axis.


## Node Outputs

- output (T, single) - A 2D tensor with the contents of the input tensor, with input dimensions up to axis flattened to the outer dimension of the output and remaining input dimensions flattened into the inner dimension of the output.


## Type Constraints

- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128


## Parameters

- name - the name of the node.
- axis (Optional [int], default=1) - Indicate up to which input dimensions (exclusive) should be flattened to the outer dimension of the output. The value for axis must be in the range $[-r, r]$, where $r$ is the rank of the input tensor. Negative value means counting
dimensions from the back. When axis $=0$, the shape of the output tensor is $\left(1,\left(d \_0 X d \_1\right.\right.$ $\ldots . d_{-}$), where the shape of the input tensor is (d_0, d_1,..$d_{-}$).
axis
Indicate up to which input dimensions (exclusive) should be flattened to the outer dimension of the output. The value for axis must be in the range [-r, r], where $r$ is the rank of the input tensor. Negative value means counting dimensions from the back. When axis $=0$, the shape of the output tensor is $\left(1,\left(d \_0 X d \_1 \ldots\right.\right.$ d_n), where the shape of the input tensor is ( $d \_0, d_{-} 1, \ldots$ d_n).
class ONNXFloor (name, *)
Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Floor takes one input data ( $\mathrm{Tensor}<\mathrm{T}>$ ) and produces one output data ( $\mathrm{Tensor}<\mathrm{T}>$ ) where the floor is, $\mathrm{y}=$ floor(x), is applied to the tensor elementwise.


## Node Inputs

- $\mathbf{X}$ (T, single) - Input tensor


## Node Outputs

- Y (T, single) - Output tensor


## Type Constraints

- T-float16, float32, float64

Parameters name - the name of the node.
class ONNXGRU (name, *, activation_alpha=None, activation_beta=None, activations=None, clip=None, direction='forward', hidden_size $=$ None, linear_before_reset=0)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Computes an one-layer GRU. This operator is usually supported via some custom implementation such as CuDNN.

Notations:
$X$ - input tensor
$z$ - update gate
$r$ - reset gate
$h$ - hidden gate
$t$ - time step ( $\mathrm{t}-1$ means previous time step)
W[zrh] - W parameter weight matrix for update, reset, and hidden gates
$R[z r h]$ - R recurrence weight matrix for update, reset, and hidden gates
$W b[z r h]$ - W bias vectors for update, reset, and hidden gates
$R b[z r h]$ - R bias vectors for update, reset, and hidden gates
WB[zrh] - W parameter weight matrix for backward update, reset, and hidden gates
$R B[z r h]$ - R recurrence weight matrix for backward update, reset, and hidden gates
WBb[zrh] - W bias vectors for backward update, reset, and hidden gates
$R B b[z r h]-\mathrm{R}$ bias vectors for backward update, reset, and hidden gates
$H$ - Hidden state
num_directions -2 if direction == bidirectional else 1
Activation functions:
$\operatorname{Relu}(\mathrm{x})-\max (0, \mathrm{x})$
$\operatorname{Tanh}(x)-\left(1-e^{\wedge}\{-2 x\}\right) /\left(1+e^{\wedge}\{-2 x\}\right)$
$\operatorname{Sigmoid}(x)-1 /\left(1+e^{\wedge}\{-x\}\right)$
(NOTE: Below are optional)
Affine(x) - alpha*x + beta
LeakyRelu(x) - x if $\mathrm{x}>=0$ else alpha $* \mathrm{x}$
ThresholdedRelu(x) - x if $\mathrm{x}>=$ alpha else 0
ScaledTanh(x) - alpha*Tanh(beta*x)
HardSigmoid(x) $-\min (\max ($ alpha*x + beta, 0$), 1)$
$\operatorname{Elu}(\mathrm{x})-\mathrm{x}$ if $\mathrm{x}>=0$ else alpha* $\left(\mathrm{e}^{\wedge} \mathrm{x}-1\right)$
$\operatorname{Softsign}(x)-x /(1+|x|)$
Softplus( $x)-\log \left(1+e^{\wedge} x\right)$
Equations (Default: f=Sigmoid, $\mathrm{g}=$ Tanh ):

- $\mathrm{zt}=\mathrm{f}\left(\mathrm{Xt}^{*}\left(\mathrm{Wz}^{\wedge} \mathrm{T}\right)+\mathrm{Ht}-1^{*}\left(\mathrm{Rz}^{\wedge} \mathrm{T}\right)+\mathrm{Wbz}+\mathrm{Rbz}\right)$
- $\mathrm{rt}=\mathrm{f}\left(\mathrm{Xt}^{*}\left(\mathrm{Wr}^{\wedge} \mathrm{T}\right)+\mathrm{Ht}-1^{*}\left(\mathrm{Rr}^{\wedge} \mathrm{T}\right)+\mathrm{Wbr}+\mathrm{Rbr}\right)$
- $\mathrm{ht}=\mathrm{g}\left(\mathrm{Xt}^{*}\left(\mathrm{~Wh}^{\wedge} \mathrm{T}\right)+(\mathrm{rt}(.) \mathrm{Ht}-1)^{*}\left(\mathrm{Rh}^{\wedge} \mathrm{T}\right)+\mathrm{Rbh}+\mathrm{Wbh}\right)$ \# default, when linear_before_reset $=0$
- ht $=\mathrm{g}\left(\mathrm{Xt}^{*}\left(\mathrm{~Wh}^{\wedge} \mathrm{T}\right)+\left(\mathrm{rt}().\left(\mathrm{Ht}-1^{*}\left(\mathrm{Rh}^{\wedge} \mathrm{T}\right)+\mathrm{Rbh}\right)\right)+\mathrm{Wbh}\right)$ \# when linear_before_reset $!=0$
- $\mathrm{Ht}=(1-\mathrm{zt})() \mathrm{ht}+.\mathrm{zt}() \mathrm{Ht}-$.

This operator has optional inputs/outputs. See [the doc](IR.md) for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.

## Node Inputs

- X (T, single) - The input sequences packed (and potentially padded) into one 3-D tensor with the shape of [seq_length, batch_size, input_size].
- W (T, single) - The weight tensor for the gates. Concatenation of W[zrh] and WB[zrh] (if bidirectional) along dimension 0 . This tensor has shape [num_directions, 3 *hidden_size, input_size].
- $\mathbf{R}$ (T, single) - The recurrence weight tensor. Concatenation of $R[z r h]$ and $R B[z r h]$ (if bidirectional) along dimension 0 . This tensor has shape [num_directions, $3 *$ hidden_size, hidden_size].
- B (T, optional) - The bias tensor for the gates. Concatenation of [Wb[zrh], Rb[zrh]] and [WBb[zrh], RBb[zrh]] (if bidirectional) along dimension 0 . This tensor has shape [num_directions, $6^{*}$ hidden_size]. Optional: If not specified - assumed to be 0
- sequence_lens (T1, optional) - Optional tensor specifying lengths of the sequences in a batch. If not specified - assumed all sequences in the batch to have length seq_length. It has shape [batch_size].
- initial_h (T, optional) - Optional initial value of the hidden. If not specified - assumed to be 0. It has shape [num_directions, batch_size, hidden_size].


## Node Outputs

- Y (T, optional) - A tensor that concats all the intermediate output values of the hidden. It has shape [seq_length, num_directions, batch_size, hidden_size].
- Y_h (T, optional) - The last output value of the hidden. It has shape [num_directions, batch_size, hidden_size].


## Type Constraints

- T-float16, float 32 , float 64
- T1 - int 32


## Parameters

- name - the name of the node.
- activation_alpha (Optional [List [float]], default=None) - Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example ( $\mathrm{f}, \mathrm{g}, \mathrm{h}$ ) in LSTM. Default values are the same as of corresponding ONNX operators.For example with LeakyRelu, the default alpha is 0.01 .
- activation_beta (Optional [List [float]], default=None) - Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example ( $\mathrm{f}, \mathrm{g}, \mathrm{h}$ ) in LSTM. Default values are the same as of corresponding ONNX operators.
- activations (Optional [List [str]], default=None) - A list of 2 (or 4 if bidirectional) activation functions for update, reset, and hidden gates. The activation functions must be one of the activation functions specified above. Optional: See the equations for default if not specified.
- clip (Optional [float], default=None) - Cell clip threshold. Clipping bounds the elements of a tensor in the range of [-threshold, +threshold] and is applied to the input of activations. No clip if not specified.
- direction (Optional [str], default='forward') - Specify if the RNN is forward, reverse, or bidirectional. Must be one of forward (default), reverse, or bidirectional.
- hidden_size (Optional [int], default=None) - Number of neurons in the hidden layer
- linear_before_reset (Optional [int], default=0) - When computing the output of the hidden gate, apply the linear transformation before multiplying by the output of the reset gate.


## activation_alpha

Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example ( $f, g$, $h$ ) in LSTM. Default values are the same as of corresponding ONNX operators.For example with LeakyRelu, the default alpha is 0.01 .

## activation_beta

Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example ( $\mathrm{f}, \mathrm{g}, \mathrm{h}$ ) in LSTM. Default values are the same as of corresponding ONNX operators.
activations
A list of 2 (or 4 if bidirectional) activation functions for update, reset, and hidden gates. The activation functions must be one of the activation functions specified above. Optional: See the equations for default if not specified.

## clip

Cell clip threshold. Clipping bounds the elements of a tensor in the range of [-threshold, +threshold] and is applied to the input of activations. No clip if not specified.

## direction

Specify if the RNN is forward, reverse, or bidirectional. Must be one of forward (default), reverse, or bidirectional.

## hidden_size

Number of neurons in the hidden layer
linear_before_reset
When computing the output of the hidden gate, apply the linear transformation before multiplying by the output of the reset gate.
class ONNXGather (name, ${ }^{*}$, axis=0)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Given data tensor of rank $\mathrm{r}>=1$, and indices tensor of rank q , gather entries of the axis dimension of data (by default outer-most one as axis=0) indexed by indices, and concatenates them in an output tensor of rank $q+(r-$ $1)$.
axis $=0$ :
Let $\mathrm{k}=\operatorname{indices}\left[\mathrm{i}_{-}\{0\}, \ldots, \mathrm{i}_{-}\{\mathrm{q}-1\}\right]$ Then $\operatorname{output}\left[\mathrm{i}_{-}\{0\}, \ldots, \mathrm{i}_{-}\{\mathrm{q}-1\}, \mathrm{j}_{-}\{0\}, \ldots, \mathrm{j}_{-}\{\mathrm{r}-2\}\right]=\operatorname{input}\left[\mathrm{k}, \mathrm{j}_{-}\{0\}, \ldots\right.$, j_\{r-2\}]
...
data $=[[1.0,1.2],[2.3,3.4],[4.5,5.7]$,
] indices $=[$
$[0,1],[1,2]$,
] output $=$ [
[ [1.0, 1.2], [2.3, 3.4],
], [
[2.3, 3.4], [4.5, 5.7],
],
]
". axis $=1$ :
Let $\mathrm{k}=$ indices $\left[\mathrm{i}_{-}\{0\}, \ldots, \mathrm{i}_{-}\{\mathrm{q}-1\}\right]$ Then output $\left[\mathrm{i}_{-}\{0\}, \ldots, \mathrm{i}_{-}\{\mathrm{q}-1\}, \mathrm{j}_{-}\{0\}, \ldots, \mathrm{j}_{-}\{\mathrm{r}-2\}\right]=\operatorname{input}\left[\mathrm{j}_{-}\{0\}, \mathrm{k}, \mathrm{j}_{-}\{1\}\right.$, $\ldots$, j $\left._{-}\{r-2\}\right]$

```
\(\boldsymbol{d a t a}=[[1.0,1.2,1.9],[2.3,3.4,3.9],[4.5,5.7,5.9]\),
] indices \(=\) [
 [0, 2],
 \(]\) axis \(=1\), output \(=[\)
 [[1.0, 1.9], [2.3, 3.9], [4.5, 5.9],
],
]
```


## Node Inputs

- data ( T , single) - Tensor of rank $\mathrm{r}>=1$.
- indices (Tind, single) - Tensor of int32/int64 indices, of any rank q. All index values are expected to be within bounds $[-\mathrm{s}, \mathrm{s}-1]$ along axis of size s . It is an error if any of the index values are out of bounds.


## Node Outputs

- output ( T, single) - Tensor of rank $\mathrm{q}+(\mathrm{r}-1$ ).


## Type Constraints

- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float 64, bool_, complex64, complex128
- Tind - int 32 , int 64


## Parameters

- name - the name of the node.
- axis (Optional [int], default=0) - Which axis to gather on. Negative value means counting dimensions from the back. Accepted range is $[-\mathrm{r}, \mathrm{r}-1]$ where $\mathrm{r}=\operatorname{rank}($ data $)$.
axis
Which axis to gather on. Negative value means counting dimensions from the back. Accepted range is [-r, $r-1]$ where $r=\operatorname{rank}$ (data).


## class ONNXGatherElements (name, *, axis=0)

Bases: dacemI.onnx.nodes.onnx_op.ONNXOp
GatherElements takes two inputs data and indices of the same rank $\mathrm{r}>=1$ and an optional attribute axis that identifies an axis of data (by default, the outer-most axis, that is axis 0 ). It is an indexing operation that produces its output by indexing into the input data tensor at index positions determined by elements of the indices tensor. Its output shape is the same as the shape of indices and consists of one value (gathered from the data) for each element in indices.

For instance, in the 3-D case ( $\mathrm{r}=3$ ), the output produced is determined by the following equations: ${ }^{\text {}}$.
out $[i][j][k]=$ input $[$ index $[i]][j][k]][j][k]$ if axis $=0$, out $[i][j][k]=$ input $[i][\operatorname{index}[i][j][k]][k]$ if axis $=1$,
$\operatorname{out}[\mathrm{i}][\mathrm{j}][\mathrm{k}]=$ input $[\mathrm{i}][\mathrm{j}][$ index $[\mathrm{i}][\mathrm{j}][\mathrm{k}]]$ if axis $=2$,
...
This operator is also the inverse of ScatterElements. It is similar to Torch's gather operation.
Example 1: ${ }^{\prime}$

$$
\begin{gathered}
\text { data }=[[1,2],[3,4], \\
] \text { indices }=[ \\
{[0,0],[1,0],} \\
] \text { axis }=1 \text { output }=[ \\
{[[1,1],[4,3],} \\
], \\
] \\
\text { Example } 2:
\end{gathered}
$$

```
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9],
```

$$
\text { ] indices }=[
$$

$$
[1,2,0],[2,0,0]
$$

$$
] \text { axis }=0 \text { output }=[
$$

$$
[[4,8,3],[7,2,3]
$$

],
]

## Node Inputs

- data ( T , single) - Tensor of rank $\mathrm{r}>=1$.
- indices (Tind, single) - Tensor of int32/int64 indices, with the same rank r as the input. All index values are expected to be within bounds $[-s, s-1]$ along axis of size $s$. It is an error if any of the index values are out of bounds.


## Node Outputs

- output (T, single) - Tensor of the same shape as indices.


## Type Constraints

- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float64, bool_, complex64, complex128
- Tind - int 32 , int 64


## Parameters

- name - the name of the node.
- axis (Optional [int], default=0) - Which axis to gather on. Negative value means counting dimensions from the back. Accepted range is $[-\mathrm{r}, \mathrm{r}-1]$ where $\mathrm{r}=\operatorname{rank}$ (data).
axis
Which axis to gather on. Negative value means counting dimensions from the back. Accepted range is [-r, $r-1]$ where $r=\operatorname{rank}($ data $)$.
class ONNXGatherND (name, *, batch_dims=0)
Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Given data tensor of rank $r>=1$, indices tensor of rank $q>=1$, and batch_dims integer $b$, this operator gathers slices of data into an output tensor of rank $q+r$-indices_shape [-1]-1-b.
indices is an q -dimensional integer tensor, best thought of as a ( $q-1$ )-dimensional tensor of index-tuples into data, where each element defines a slice of data
batch_dims (denoted as $b$ ) is an integer indicating the number of batch dimensions, i.e the leading $b$ number of dimensions of data tensor and indices are representing the batches, and the gather starts from the $b+1$ dimension.

Some salient points about the inputs' rank and shape:

1) $\mathrm{r}>=1$ and $\mathrm{q}>=1$ are to be honored. There is no dependency condition to be met between ranks $r$ and $q$
2) The first $b$ dimensions of the shape of indices tensor and data tensor must be equal.
3) $b<\min (q, r)$ is to be honored.
4) The indices_shape $[-1]$ should have a value between 1 (inclusive) and rank $r$ - $b$ (inclusive)
5) All values in indices are expected to be within bounds [-s, s-1] along axis of size $s$ (i.e.) -data_shape[i] $<=$ indices $[\ldots, i]<=$ data_shape $[i]-1$. It is an error if any of the index values are out of bounds.

The output is computed as follows:
The output tensor is obtained by mapping each index-tuple in the indices tensor to the corresponding slice of the input data.

1) If indices_shape $[-1]>r-b=>$ error condition
2) If indices_shape $[-1]==r-b$, since the rank of indices is $q$, indices can be thought of as $N(q-b-1)$ dimensional tensors containing 1-D tensors of dimension $r-b$, where $N$ is an integer equals to the product of 1 and all the elements in the batch dimensions of the indices_shape. Let us think of each such $r$ - $b$ ranked tensor as indices_slice. Each scalar value corresponding to data[0:b-1,indices_slice] is filled into the corresponding location of the ( $q-b-1$ )-dimensional tensor to form the output tensor (Example 1 below)
3) If indices_shape $[-1]<r-b$, since the rank of indices is $q$, indices can be thought of as $N(q-b-1)$ dimensional tensor containing 1-D tensors of dimension $<r-b$. Let us think of each such tensors as indices_slice. Each tensor slice corresponding to data[0:b-1, indices_slice , :] is filled into the corresponding location of the ( $q-b-1$ )-dimensional tensor to form the output tensor (Examples 2, 3, 4 and 5 below)

This operator is the inverse of ScatterND.

## Example 1

batch_dims $=0$
data $=[[0,1],[2,3]] \#$ data_shape $=[2,2]$
indices $=[[0,0],[1,1]] \#$ indices_shape $=[2,2]$
output $=[0,3]$ \# output_shape $=[2]$
Example 2
batch_dims $=0$
data $=[[0,1],[2,3]]$ \# data_shape $=[2,2]$
indices $=[[1],[0]] \#$ indices_shape $=[2,1]$
output $=[[2,3],[0,1]]$ \# output_shape $=[2,2]$

## Example 3

batch_dims $=0$
data $=[[[0,1],[2,3]],[[4,5],[6,7]]] \#$ data_shape $=[2,2,2]$
indices $=[[0,1],[1,0]] \#$ indices_shape $=[2,2]$
output $=[[2,3],[4,5]]$ \# output_shape $=[2,2]$

## Example 4

batch_dims $=0$
data $=[[[0,1],[2,3]],[[4,5],[6,7]]] \#$ data_shape $=[2,2,2]$
indices $=[[[0,1]],[[1,0]]] \#$ indices_shape $=[2,1,2]$
output $=[[[2,3]],[[4,5]]]$ \# output_shape $=[2,1,2]$
Example 5

```
batch_dims = 1
```

data $=[[[0,1],[2,3]],[[4,5],[6,7]]] \#$ data_shape $=[2,2,2]$
indices $=[[1],[0]] \#$ indices_shape $=[2,1]$
output $=[[2,3],[4,5]]$ \# output_shape $=[2,2]$

## Node Inputs

- data ( T , single) - Tensor of rank $\mathrm{r}>=1$.
- indices (indices_constraint, single) - Tensor of rank $q>=1$. All index values are expected to be within bounds [-s, s-1] along axis of size $s$. It is an error if any of the index values are out of bounds.


## Node Outputs

- output ( T , single) - Tensor of $\operatorname{rank} \mathrm{q}+\mathrm{r}$ - indices_shape[-1]-1.


## Type Constraints

- T-uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128
- indices_constraint - int 64


## Parameters

- name - the name of the node.
- batch_dims (Optional [int], default=0) - The number of batch dimensions. The gather of indexing starts from dimension of data[batch_dims:]


## batch_dims

The number of batch dimensions. The gather of indexing starts from dimension of data[batch_dims:]
class ONNXGemm (name, *, alpha=1.0, beta $=1.0$, $\operatorname{trans} A=0, \operatorname{trans} B=0$ )
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
General Matrix multiplication: https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms\#Level_3
$A^{\prime}=\operatorname{transpose}(\mathrm{A})$ if transA else $A$
$B^{\prime}=\operatorname{transpose}(B)$ if transB else B
Compute $\mathrm{Y}=$ alpha $* \mathrm{~A}^{\prime} * \mathrm{~B}^{\prime}+$ beta $* \mathrm{C}$, where input tensor A has shape $(\mathrm{M}, \mathrm{K})$ or $(\mathrm{K}, \mathrm{M})$, input tensor B has shape $(\mathrm{K}, \mathrm{N})$ or $(\mathrm{N}, \mathrm{K})$, input tensor C is broadcastable to shape $(\mathrm{M}, \mathrm{N})$, and output tensor Y has shape $(\mathrm{M}, \mathrm{N})$. A will be transposed before doing the computation if attribute transA is non-zero, same for B and transB. This operator supports unidirectional broadcasting (tensor C should be unidirectional broadcastable to tensor A * B); for more details please check [the doc](Broadcasting.md). This operator has optional inputs/outputs. See [the doc](IR.md) for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.

## Node Inputs

- A (T, single) - Input tensor A. The shape of A should be $(\mathrm{M}, \mathrm{K})$ if transA is 0 , or $(\mathrm{K}, \mathrm{M})$ if transA is non-zero.
- B (T, single) - Input tensor B. The shape of B should be $(\mathrm{K}, \mathrm{N})$ if transB is 0 , or $(\mathrm{N}, \mathrm{K})$ if transB is non-zero.
- $\mathbf{C}$ (T, optional) - Optional input tensor $\mathbf{C}$. If not specified, the computation is done as if $\mathbf{C}$ is a scalar 0 . The shape of $C$ should be unidirectional broadcastable to $(\mathrm{M}, \mathrm{N})$.


## Node Outputs

- $\mathbf{Y}$ (T, single) - Output tensor of shape ( $\mathrm{M}, \mathrm{N}$ ).


## Type Constraints

- T-float16, float 32 , float 64 , uint 32 , uint 64 , int 32 , int 64


## Parameters

- name - the name of the node.
- alpha (Optional [float], default=1.0) - Scalar multiplier for the product of input tensors A * B.
- beta (Optional [float], default=1.0) - Scalar multiplier for input tensor C.
- transA (Optional [int], default=0) - Whether A should be transposed
- transB (Optional [int], default=0) - Whether B should be transposed


## alpha

Scalar multiplier for the product of input tensors A * B.

## beta

Scalar multiplier for input tensor C.

## transA

Whether A should be transposed

## transB

Whether B should be transposed

## class ONNXGlobalAveragePool (name, *)

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
GlobalAveragePool consumes an input tensor X and applies average pooling across the values in the same channel. This is equivalent to AveragePool with kernel size equal to the spatial dimension of input tensor.

## Node Inputs

- X (T, single) - Input data tensor from the previous operator; dimensions for image case are ( $\mathrm{N} \times \mathrm{C} \times \mathrm{HxW}$ ), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of ( N x C x D1 x D2 $\ldots \mathrm{Dn}$ ), where N is the batch size.


## Node Outputs

- Y (T, single) - Output data tensor from pooling across the input tensor. The output tensor has the same rank as the input. The first two dimensions of output shape are the same as the input ( $\mathrm{N} \times \mathrm{C}$ ), while the other dimensions are all 1.


## Type Constraints

- T-float16,float 32, float64

Parameters name - the name of the node.
class ONNXGlobalLpPool (name, *, p=2)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
GlobalLpPool consumes an input tensor X and applies lp pool pooling across the values in the same channel. This is equivalent to LpPool with kernel size equal to the spatial dimension of input tensor.

## Node Inputs

- X (T, single) - Input data tensor from the previous operator; dimensions for image case are ( $\mathrm{N} \times \mathrm{C} \times \mathrm{H} \times \mathrm{W}$ ), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of ( $\mathrm{N} \times \mathrm{C} \times \mathrm{D} 1 \times \mathrm{D} 2 \ldots \mathrm{Dn}$ ), where N is the batch size.


## Node Outputs

- Y (T, single) - Output data tensor from pooling across the input tensor. The output tensor has the same rank as the input. The first two dimensions of output shape are the same as the input ( $\mathrm{N} \times \mathrm{C}$ ), while the other dimensions are all 1.


## Type Constraints

- T-float16, float 32, float 64


## Parameters

- name - the name of the node.
- $\mathbf{p}$ (Optional [int], default=2) - p value of the Lp norm used to pool over the input data.
p
$p$ value of the Lp norm used to pool over the input data.

```
class ONNXGlobalMaxPool(name, *)
```

Bases: daceml.onnx.nodes.onnx_op.ONNXOp
GlobalMaxPool consumes an input tensor X and applies max pooling across the values in the same channel. This is equivalent to MaxPool with kernel size equal to the spatial dimension of input tensor.

## Node Inputs

- X (T, single) - Input data tensor from the previous operator; dimensions for image case are ( $\mathrm{N} \times \mathrm{C} \times \mathrm{H} \times \mathrm{W}$ ), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of ( N x C x D1 x D2 $\ldots \mathrm{Dn}$ ), where N is the batch size.


## Node Outputs

- Y (T, single) - Output data tensor from pooling across the input tensor. The output tensor has the same rank as the input. The first two dimensions of output shape are the same as the input ( NxC ), while the other dimensions are all 1.


## Type Constraints

- T-float16, float 32, float 64

Parameters name - the name of the node.

```
class ONNXGradient (name, *, xs, y,zs=None)
```

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Gradient operator computes the partial derivatives of a specific tensor w.r.t. some other tensors. This operator is widely used in gradient-based training algorithms. To illustrate its use, let's consider a computation graph,
". X —.
v
W $\rightarrow$ Conv $\rightarrow$ H $\rightarrow$ Gemm $\rightarrow$ Y Z
...
, where W and Z are trainable tensors. Note that operators' attributes are omitted for the sake of simplicity. Let $\mathrm{dY} / \mathrm{dW}(\mathrm{dY} / \mathrm{dZ})$ be the gradient of Y with respect to $\mathrm{W}(\mathrm{Z})$. The user can compute gradient by inserting Gradient operator to form another graph shown below.
$\cdots \mathrm{W} \rightarrow$ Conv $\rightarrow \mathrm{H} \rightarrow$ Gemm $\rightarrow \mathrm{Y}|\wedge \wedge| \mid\|\mathrm{XZ}\|\| \|$.——l|l(W/X is the $1 \mathrm{st} / 2 \mathrm{nd} / 3 \mathrm{rd}$ input of Gradient as shown in III "xs" followed by "zs") | v v '—> Gradient(xs=["W", "Z"], zs=["X"], y="Y")

I
$\longrightarrow \mathrm{dY} / \mathrm{dW}$ (1st output of Gradient)
‘ $>\mathrm{dY} / \mathrm{dZ}$ (2nd output of Gradient)
…
By definition, the tensor " $y$ " is a function of independent variables in "xs" and " $z s$ ". Since we only compute the gradient of " $y$ " w.r.t. the differentiable variables in "xs", this Gradient only outputs dY/dW and dY/dZ. Note that "H" cannot appear in "xs" and "zs". The reason is that "H" can be determined by tensors "W" and "X" and therefore " $H$ " is not an independent variable.

All outputs are optional. If needed, for example, user can assign an empty string to the 1 st output name of that Gradient to skip the generation of $\mathrm{dY} / \mathrm{dW}$. Note that the concept of optional outputs can also be found in ONNX's RNN, GRU, and LSTM.
Gradient operator can compute derivative against intermediate tensors. For example, the gradient of Y with respect to H can be done via

```
`` W -> Conv -> H -> Gemm -> Y
 ^|^|||X|Z._-||._| (H/Z is the 1st/2nd input of Gradient as shown in "xs")
 v v
```

```
Gradient(xs=["H", ''Z'`], y=''Y')
```

Gradient(xs=["H", ''Z'`], y=''Y')     I     I     `> dY/dH (1st output of Gradient)
`> dY/dH (1st output of Gradient)     `> dY/dZ (2nd output of Gradient)

```
…

It is possible to represent high-order differentiation using Gradient operators. For example, given the following linear model:
```

`` W H Gemm }->\mathrm{ Y Y }->\mathrm{ Loss }->\mathrm{ O
^^||XL
."

```

To compute the 2 nd order derivative of \(O\) with respect to \(W\) (denoted by \(\mathrm{d}^{\wedge} 2 \mathrm{O} / \mathrm{dW}^{\wedge} 2\)), one can do

 Gradient(xs=["X", "W"], zs=["L"], \(\mathrm{y}=\) " \(\mathrm{dO} / \mathrm{dW} ") \longrightarrow \mathrm{d}(\mathrm{dO} / \mathrm{dW}) \mathrm{dX}\) (1st output of

Gradient)
‘ \(\rightarrow \mathrm{d}^{\wedge} 2 \mathrm{O} / \mathrm{dW}^{\wedge} 2\) (2nd output of Gradient)
…
The tensors named in attributes "xs", "zs", and " \(y\) " define the differentiated computation graph, and the inputs to Gradient node define the values at which the gradient is computed. We can feed different tensors to the identified graph. For example, one can compute the gradient of Y with respect to H at a specific value of H , H_1, by providing that value as an input to the Gradient node.
\[
\begin{aligned}
\cdots \mathrm{W} & \rightarrow \\
& \text { Conv } \rightarrow \mathrm{H} \rightarrow \mathrm{C} \text { Gemm } \rightarrow \mathrm{Y} \\
& \wedge \\
& \| \mathrm{XZ}
\end{aligned}
\]

\section*{Z_1 (2nd input of Gradient)}
v
\(H _1 \rightarrow\) Gradient(\(\left.x s=[" H ", " Z "], y=" Y "\right) \longrightarrow d Y / d H\) when \(H=H _1\) and \(Y=Y _1\).
‘ \(>\mathrm{dY} / \mathrm{dZ}\) (2nd output of Gradient)
...

When the inputs of Gradient are the tensors named in "xs" and "zs", the computation can be optimized. More specifically, intermediate variables in forward pass can be reused if the gradient is computed via reverse-mode auto-differentiation.

\section*{Node Inputs}
- Inputs (T1, variadic) - The values fed into graph identified by the attributes. The i-th input is the value of the i-th tensor specified in the concatenated list of the attribute "xs" and the attribute " zs ". For example, if \(\mathrm{xs}=[\) " A ", " B "] and \(\mathrm{zs}=[\) " \(\mathrm{C} "]\), the first input is used as the value of symbol "A" and the 3rd input is substituted for all the occurrences of "C".

\section*{Node Outputs}
- Outputs (T2, variadic) - The gradient of the tensor specified by the attribute " y " with respect to each of tensors specified in the attribute "xs". The i-th output is the gradient of " \(y\) " with respect to the i-th tensor specified in the attribute "xs".

\section*{Type Constraints}
- T1 - uint8, uint16, uint 32 , uint 64 , int 8 , int16, int 32 , int 64 , float16, float 32 , float64, bool_, complex64, complex128
- T2-float16, float 32, float 64

\section*{Parameters}
- name - the name of the node.
- xs (List [str]) - Input tensor names of the differentiated sub-graph. It contains only the necessary differentiated inputs of a (sub-)graph. Variables (usually called intermediate variables) that can be generated from inputs cannot be included in this attribute.
- \(\mathbf{y}\) (str) - The targeted tensor. It can be viewed as the output of the differentiated function. The attribute "xs" and attribute "zs" are the minimal independent variable set that determines the value of " \(y\) ".
- zs (Optional [List [str]], default=None) - Input tensor names of the differentiated sub-graph. It contains only the necessary non-differentiated inputs of a (sub-)graph. Variables (usually called intermediate variables) that can be generated from inputs cannot be included in this attribute.

XS
Input tensor names of the differentiated sub-graph. It contains only the necessary differentiated inputs of a (sub-)graph. Variables (usually called intermediate variables) that can be generated from inputs cannot be included in this attribute.
y
The targeted tensor. It can be viewed as the output of the differentiated function. The attribute "xs" and attribute " \(z s\) " are the minimal independent variable set that determines the value of " \(y\) ".

ZS
Input tensor names of the differentiated sub-graph. It contains only the necessary non-differentiated inputs of a (sub-)graph. Variables (usually called intermediate variables) that can be generated from inputs cannot be included in this attribute.
class ONNXGraphCall (name, *, graph_name)
Bases: dacemI.onnx. nodes.onnx_op. ONNXOp
The GraphCall operator invokes a graph inside TrainingInfoProto's algorithm field. The GraphCall inputs and outputs are bound to those of invoked graph by position. If a graph input has an initializer, that input is considered optional. All graph outputs are optional.
Below Python syntax is used for describing dictionary and list.
Assume that ModelProto's graph field has - name: "MyInferenceGraph" - input: ["X", "W", "Z"] - initializer: [W] - output: ["Y"]
as visualized below for inference.
… X —.
v
W \(\rightarrow\) Conv \(\rightarrow\) H \(\rightarrow\) Gemm \(\rightarrow\) Y Z
...
Assume that the training algorithm contains
- inputs: ["X_1", "Z_1", "C"]
- initializer: [T]
- outputs: ["W_new"]
with a dictionary
- update_binding: \{"W": "W_new", "T": "T_new"\}

Inside the training algorithm graph, one can invoke the inference graph via adding a GraphCall node with
- inputs: ["X_1", "W", Z_1"]
- outputs: ["Y_1"]
- an attribute graph_name="MyInferenceGraph",

The initializers, "W" and "T" in this case, in update_binding are considered globally-visible and mutable variables, which can be used as inputs of operators in the training graph.
An example training algorithm graph may look like

where Loss is a dummy node which computes the minimized objective function.
The variable "W" is an optional input in the called graph. If the user omits it, the input list of GraphCall becomes ["X_1", "", "Z_1"]. In this case, from the view of computation graph, the Conv operator invoked by GraphCall's may be still connected the global "W" variable and therefore the structure of the computation graph is unchanged.

\section*{Node Inputs}
- Inputs (T, variadic) - Inputs fed to the invoked graph. The i-th input here goes to the i-th input of the invoked graph. To omit an optional input in this field, the user can drop it or use an empty string.

\section*{Node Outputs}
- Outputs (T, variadic) - The outputs generated by the called graph. Its i-th value is bound to the i-th output of the called graph. Similar to the inputs, all outputs are optional.

\section*{Type Constraints}
- T - uint8, uint16, uint 32, uint 64, int8, int16, int32, int64, float16, float 32 , float64, bool_, complex64, complex128

\section*{Parameters}
- name - the name of the node.
- graph_name (str) - The invoked graph's name. The only allowed value is the name of the inference graph, which is stored in "ModelProto.graph.name" in the ONNX model format.

\section*{graph_name}

The invoked graph's name. The only allowed value is the name of the inference graph, which is stored in "ModelProto.graph.name" in the ONNX model format.
class ONNXGreater (name, *)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Returns the tensor resulted from performing the greater logical operation elementwise on the input tensors \(A\) and \(B\) (with Numpy-style broadcasting support).

This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- A (T, single) - First input operand for the logical operator.
- B (T, single) - Second input operand for the logical operator.

\section*{Node Outputs}
- C (T1, single) - Result tensor.

\section*{Type Constraints}
- \(\mathbf{T}\) - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float 64
- \(\mathbf{T 1}\) - bool_

Parameters name - the name of the node.
class ONNXGreaterOrEqual (name, *)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Returns the tensor resulted from performing the greater_equal logical operation elementwise on the input tensors \(A\) and \(B\) (with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- A (T, single) - First input operand for the logical operator.
- B (T, single) - Second input operand for the logical operator.

\section*{Node Outputs}
- C (T1, single) - Result tensor.

\section*{Type Constraints}
- \(\mathbf{T}\) - uint , uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float 64
- \(\mathbf{T 1}\) - bool_

Parameters name - the name of the node.
class ONNXHardSigmoid (name, *, alpha \(=0.20000000298023224\), beta \(=0.5\))
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
HardSigmoid takes one input data (Tensor \(<\mathrm{T}>\)) and produces one output data (Tensor<T>) where the HardSigmoid function, \(\mathrm{y}=\max (0, \min (1\), alpha \(* \mathrm{x}+\) beta \()\)), is applied to the tensor elementwise.

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Input tensor

\section*{Node Outputs}
- Y (T, single) - Output tensor

\section*{Type Constraints}
- T-float16, float 32, float64

\section*{Parameters}
- name - the name of the node.
- alpha (Optional [float], default=0.20000000298023224) - Value of alpha.
- beta (Optional [float], default=0.5) - Value of beta.
alpha
Value of alpha.
beta
Value of beta.
class ONNXHardmax (name, *, axis=1)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
The operator computes the hardmax (\(\mathbf{1}\) for the first maximum value, and \(\mathbf{0}\) for all others) values for each layer in the batcl of the given input.

The input does not need to explicitly be a 2 D vector; rather, it will be coerced into one. For an arbitrary ndimensional tensor input in \(\left[\mathrm{a} _0, \mathrm{a} _1, \ldots, \mathrm{a} _\{\mathrm{k}-1\}, \mathrm{a} _\mathrm{k}, \ldots, \mathrm{a} _\{\mathrm{n}-1\}\right]\) and k is the axis provided, then input will be coerced into a 2 -dimensional tensor with dimensions [a_0 * ... *a_\{k-1\}, a_k*... *a_\{n-1\}]. For the default case where axis=1, this means the input tensor will be coerced into a 2D tensor of dimensions [a_0, a_1 * ... * a_\{n-1\}], where a_0 is often the batch size. In this situation, we must have a_0=N and a_1 * \(\ldots\) * \(a_{-}\{\mathrm{n}-1\}=\mathrm{D}\). Each of these dimensions must be matched correctly, or else the operator will throw errors. The output tensor has the same shape and contains the hardmax values of the corresponding input.

\section*{Node Inputs}
- input (\(T\), single) - The input tensor that's coerced into a 2D matrix of size (NxD) as described above.

\section*{Node Outputs}
- output (T, single) - The output values with the same shape as input tensor (the original size without coercion).

\section*{Type Constraints}
- T-float16, float 32, float 64

\section*{Parameters}
- name - the name of the node.
- axis (Optional [int], default=1) - Describes the axis of the inputs when coerced to 2D; defaults to one because the 0th axis most likely describes the batch_size. Negative value means counting dimensions from the back. Accepted range is [-r, \(r-1]\) where \(r=\) \(\operatorname{rank}(\) input).
axis
Describes the axis of the inputs when coerced to 2D; defaults to one because the 0th axis most likely describes the batch_size. Negative value means counting dimensions from the back. Accepted range is [-r, \(r-1]\) where \(r=\operatorname{rank}\) (input).
class ONNXIdentity (name, *)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Identity operator

\section*{Node Inputs}
- input (T, single) - Input tensor

\section*{Node Outputs}
- output (T, single) - Tensor to copy input into.

\section*{Type Constraints}
- \(\mathbf{T}\) - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128

Parameters name - the name of the node.
class ONNXImputer (name, *, imputed_value_floats=None, imputed_value_int64s=None, replaced_value_float \(=0.0\), replaced_value_int \(64=0\))
Bases: dacemı.onnx.nōdes.onnx_op.ONNXOp
Replaces inputs that equal one value with another, leaving all other elements alone.
 This operator is typically used to replace missing values in situations where they have a canonical representation, such as \(-1,0, \mathrm{NaN}\), or some extreme value. \(<\mathrm{br}>\) One and only one of imputed_value_floats or imputed_value_int64s should be defined - floats if the input tensor holds floats, integers if the input tensor holds integers. The imputed values must all fit within the width of the tensor element type. One and only one of the replaced_value_float or replaced_value_int64 should be defined, which one depends on whether floats or integers are being processed.
 The imputed_value attribute length can be 1 element, or it can have one element per input feature. \(<\) br \(>\) In other words, if the input tensor has the shape \(\left[{ }^{*}, \mathrm{~F}\right]\), then the length of the attribute array may be 1 or F . If it is 1 , then it is broadcast along the last dimension and applied to each feature.

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Data to be processed.

\section*{Node Outputs}
- Y (T, single) - Imputed output data

\section*{Type Constraints}
- \(\mathbf{T}\)-float 32 , float 64 , int 64 , int 32

\section*{Parameters}
- name - the name of the node.
- imputed_value_floats (Optional [List [float]], default=None) - Value(s) to change to
- imputed_value_int64s (Optional [List [int]], default=None) - Value(s) to change to.
- replaced_value_float (Optional [float], default=0.0) - A value that needs replacing.
- replaced_value_int 64 (Optional [int], default=0) - A value that needs replacing.
imputed_value_floats
Value(s) to change to
imputed_value_int64s
Value(s) to change to.
replaced_value_float
A value that needs replacing.
replaced_value_int64
A value that needs replacing.
class ONNXInstanceNormalization (name, *, epsilon=9.999999747378752e-06)
Bases: dacemI.onnx.nodes.onnx_op.ONNXOp
Carries out instance normalization as described in the paper https://arxiv.org/abs/1607.08022.
\(\mathrm{y}=\operatorname{scale} *(\mathrm{x}-\) mean \() / \operatorname{sqrt}(\) variance + epsilon \()+\mathrm{B}\), where mean and variance are computed per instance per channel.

\section*{Node Inputs}
- input (T , single) - Input data tensor from the previous operator; dimensions for image case are (\(\mathrm{N} \times \mathrm{C} \times \mathrm{H} \times \mathrm{W}\)), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (\(\mathrm{N} \times \mathrm{C} \times \mathrm{D} 1 \times \mathrm{D} 2 \ldots \mathrm{Dn}\)), where N is the batch size.
- scale (T, single) - The input 1-dimensional scale tensor of size C.
- B (T, single) - The input 1-dimensional bias tensor of size C.

\section*{Node Outputs}
- output (T, single) - The output tensor of the same shape as input.

\section*{Type Constraints}
- T-float16,float32, float64

\section*{Parameters}
- name - the name of the node.
- epsilon (Optional [float], default=9.999999747378752e-06) - The epsilon value to use to avoid division by zero.

\section*{epsilon}

The epsilon value to use to avoid division by zero.
```

class ONNXIsInf (name, *, detect_negative=1, detect_positive=1)

```

Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Map infinity to true and other values to false.

\section*{Node Inputs}
- \(\mathbf{X}\) (T1, single) - input

\section*{Node Outputs}
- \(\mathbf{Y}\) (T2, single) - output

\section*{Type Constraints}
- T1 - float 32, float 64
- T2-bool_

\section*{Parameters}
- name - the name of the node.
- detect_negative (Optional [int], default=1) - (Optional) Whether map negative infinity to true. Default to 1 so that negative infinity induces true. Set this attribute to 0 if negative infinity should be mapped to false.
- detect_positive (Optional [int], default=1) - (Optional) Whether map positive infinity to true. Default to 1 so that positive infinity induces true. Set this attribute to 0 if positive infinity should be mapped to false.

\section*{detect_negative}
(Optional) Whether map negative infinity to true. Default to 1 so that negative infinity induces true. Set this attribute to 0 if negative infinity should be mapped to false.

\section*{detect_positive}
(Optional) Whether map positive infinity to true. Default to 1 so that positive infinity induces true. Set this attribute to 0 if positive infinity should be mapped to false.

\section*{class ONNXIsNaN (name, *)}

Bases: dacemI.onnx.nodes.onnx_op.ONNXOp
Returns which elements of the input are NaN .

\section*{Node Inputs}
- \(\mathbf{X}\) (T1, single) - input

\section*{Node Outputs}
- Y (T2, single) - output

\section*{Type Constraints}
- T1-float16, float 32, float 64
- T2-bool_

Parameters name - the name of the node.
class ONNXLRN (name, *, alpha=9.999999747378752e-05, beta \(=0.75\), bias \(=1.0\), size)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Local Response Normalization proposed in the [AlexNet paper](https://papers.nips.cc/paper/ 4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf). It normalizes over local input regions. The local region is defined across the channels. For an element \(\mathrm{X}[\mathrm{n}, \mathrm{c}, \mathrm{d} 1, \ldots, \mathrm{dk}]\) in a tensor of shape (N x C x D1 x D2, \(\ldots\), Dk), its region is \(\{\mathrm{X}[\mathrm{n}, \mathrm{i}, \mathrm{d} 1, \ldots, \mathrm{dk}] \mid \max (0, \mathrm{c}-\mathrm{floor}((\operatorname{size}-1) / 2))<=\mathrm{i}<=\) \(\min (\mathrm{C}-1, \mathrm{c}+\operatorname{ceil}((\) (size -1\() / 2))\}\).
square_sum[n, c, d1, \(\ldots, \mathrm{dk}]=\operatorname{sum}(\mathrm{X}[\mathrm{n}, \mathrm{i}, \mathrm{d} 1, \ldots, \mathrm{dk}] \wedge 2)\), where \(\max (0, \mathrm{c}-\mathrm{floor}((\) size -1\() / 2))<=\mathrm{i}<=\min (\mathrm{C}\)
\(-1, \mathrm{c}+\operatorname{ceil}((\) size -1\() / 2)\)).
\(\mathrm{Y}[\mathrm{n}, \mathrm{c}, \mathrm{d} 1, \ldots, \mathrm{dk}]=\mathrm{X}[\mathrm{n}, \mathrm{c}, \mathrm{d} 1, \ldots, \mathrm{dk}] /\left(\text { bias }+ \text { alpha } / \text { size } * \operatorname{square} _ \text {sum }[\mathrm{n}, \mathrm{c}, \mathrm{d} 1, \ldots, \mathrm{dk}]\right)^{\wedge}\) beta

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Input data tensor from the previous operator; dimensions for image case are (\(\mathrm{N} \times \mathrm{C} \times \mathrm{H} x \mathrm{~W}\)), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D \(2 \ldots \mathrm{Dn}\)), where N is the batch size. Optionally, if dimension denotation is in effect, the operation expects the input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].

\section*{Node Outputs}
- \(\mathbf{Y}\) (T, single) - Output tensor, which has the shape and type as input tensor

\section*{Type Constraints}
- T-float 16, float 32 , float 64

\section*{Parameters}
- name - the name of the node.
- alpha (Optional [float], default=9.999999747378752e-05) - Scaling parameter.
- beta (Optional [float], default=0.75) - The exponent.
- bias (Optional [float], default=1.0) -
- size (int) - The number of channels to sum over

\section*{alpha}

Scaling parameter.

\section*{beta}

The exponent.

\section*{bias}

Object property of type float

\section*{size}

The number of channels to sum over
class ONNXLSTM (name, *, activation_alpha=None, activation_beta=None, activations=None, clip=None, direction='forward', hidden_size=None, input_forget=0)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Computes an one-layer LSTM. This operator is usually supported via some custom implementation such as CuDNN.

Notations:
\(X\) - input tensor
\(i\) - input gate
\(o\) - output gate
\(f\) - forget gate
\(c\) - cell gate
\(t\) - time step (\(\mathrm{t}-1\) means previous time step)
W[iofc] - W parameter weight matrix for input, output, forget, and cell gates
\(R[i o f c]\) - R recurrence weight matrix for input, output, forget, and cell gates
Wb[iofc] - W bias vectors for input, output, forget, and cell gates
\(R b\) [iofc] - R bias vectors for input, output, forget, and cell gates
P[iof]-P peephole weight vector for input, output, and forget gates
WB[iofc] - W parameter weight matrix for backward input, output, forget, and cell gates
\(R B\) [iofc] - R recurrence weight matrix for backward input, output, forget, and cell gates
WBb[iofc] - W bias vectors for backward input, output, forget, and cell gates
\(R B b[i o f c]\) - R bias vectors for backward input, output, forget, and cell gates
PB[iof]-P peephole weight vector for backward input, output, and forget gates

\section*{\(H\) - Hidden state}
num_directions - 2 if direction == bidirectional else 1
Activation functions:
\(\operatorname{Relu}(\mathrm{x})-\max (0, \mathrm{x})\)
\(\operatorname{Tanh}(x)-\left(1-e^{\wedge}\{-2 x\}\right) /\left(1+e^{\wedge}\{-2 x\}\right)\)
\(\operatorname{Sigmoid}(x)-1 /\left(1+e^{\wedge}\{-x\}\right)\)
(NOTE: Below are optional)
Affine(x) - alpha*x + beta
LeakyRelu(x) - x if \(\mathrm{x}>=0\) else alpha * x
ThresholdedRelu(x) - x if \(\mathrm{x}>=\) alpha else 0

ScaledTanh(x) - alpha*Tanh(beta*x)
\(\operatorname{HardSigmoid}(\mathrm{x})-\min \left(\max \left(\operatorname{alpha}{ }^{\mathrm{x}}+\right.\right.\) beta, \(\left.\left.^{2}\right), 1\right)\)
\(\operatorname{Elu}(x)-x\) if \(x>=0\) else alpha* \(\left(e^{\wedge} x-1\right)\)
Softsign(x\()-\mathrm{x} /(1+|\mathbf{x}|)\)
\(\operatorname{Softplus}(x)-\log \left(1+e^{\wedge} x\right)\)
Equations (Default: \(f=\) Sigmoid, \(g=\) Tanh, \(h=\) Tanh):
- it \(=\mathrm{f}\left(\mathrm{Xt}^{*}\left(\mathrm{Wi}^{\wedge} \mathrm{T}\right)+\mathrm{Ht}-1^{*}\left(\mathrm{Ri}^{\wedge} \mathrm{T}\right)+\mathrm{Pi}() \mathrm{Ct}-1+\mathrm{Wbi}+\mathrm{Rbi}.\right)\)
\(\cdot \mathrm{ft}=\mathrm{f}\left(\mathrm{Xt}^{*}\left(\mathrm{Wf}^{\wedge} \mathrm{T}\right)+\mathrm{Ht}-1^{*}\left(\mathrm{Rf}^{\wedge} \mathrm{T}\right)+\mathrm{Pf}() \mathrm{Ct}-1+\mathrm{Wbf}+\mathrm{Rbf}.\right)\)
- \(\mathrm{ct}=\mathrm{g}\left(\mathrm{Xt}^{*}\left(\mathrm{Wc}^{\wedge} \mathrm{T}\right)+\mathrm{Ht}-1^{*}\left(\mathrm{Rc}^{\wedge} \mathrm{T}\right)+\mathrm{Wbc}+\mathrm{Rbc}\right)\)
- \(\mathrm{Ct}=\mathrm{ft}\) (.) \(\mathrm{Ct}-1+\mathrm{it}\) (.) ct
- ot \(=\mathrm{f}\left(\mathrm{Xt}^{*}\left(\mathrm{Wo}^{\wedge} \mathrm{T}\right)+\mathrm{Ht}-1^{*}\left(\mathrm{Ro}^{\wedge} \mathrm{T}\right)+\mathrm{Po}() \mathrm{Ct}+\mathrm{Wbo}+\mathrm{Rbo}.\right)\)
- \(\mathrm{Ht}=\) ot \(() .\mathrm{h}(\mathrm{Ct})\)

This operator has optional inputs/outputs. See [the doc](IR.md) for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.

\section*{Node Inputs}
- X (T, single) - The input sequences packed (and potentially padded) into one 3-D tensor with the shape of [seq_length, batch_size, input_size].
- W (T, single) - The weight tensor for the gates. Concatenation of W[iofc] and WB[iofc] (if bidirectional) along dimension 0 . The tensor has shape [num_directions, \(4 * h i d d e n _\)size, input_size].
- \(\mathbf{R}\) (T, single) - The recurrence weight tensor. Concatenation of \(R[i o f c]\) and \(R B[i o f c]\) (if bidirectional) along dimension 0 . This tensor has shape [num_directions, \(4 *\) hidden_size, hidden_size].
- B (T, optional) - The bias tensor for input gate. Concatenation of [Wb[iofc], Rb[iofc]], and [WBb[iofc], \(R B b[i o f c]]\) (if bidirectional) along dimension 0 . This tensor has shape [num_directions, \(8^{*}\) hidden_size]. Optional: If not specified - assumed to be 0 .
- sequence_lens (T1, optional) - Optional tensor specifying lengths of the sequences in a batch. If not specified - assumed all sequences in the batch to have length seq_length. It has shape [batch_size].
- initial_h (T, optional) - Optional initial value of the hidden. If not specified - assumed to be 0 . It has shape [num_directions, batch_size, hidden_size].
- initial_c (T, optional) - Optional initial value of the cell. If not specified - assumed to be 0 . It has shape [num_directions, batch_size, hidden_size].
- \(\mathbf{P}\) (T, optional) - The weight tensor for peepholes. Concatenation of P[iof] and PB[iof] (if bidirectional) along dimension 0 . It has shape [num_directions, \(3 *\) hidde_size]. Optional: If not specified - assumed to be 0 .

\section*{Node Outputs}
- Y (T, optional) - A tensor that concats all the intermediate output values of the hidden. It has shape [seq_length, num_directions, batch_size, hidden_size].
- Y_h (T, optional) - The last output value of the hidden. It has shape [num_directions, batch_size, hidden_size].
- Y_c (T, optional) - The last output value of the cell. It has shape [num_directions, batch_size, hidden_size].

\section*{Type Constraints}
- T-float16, float 32 , float 64
- T1 - int 32

\section*{Parameters}
- name - the name of the node.
- activation_alpha (Optional [List [float]], default=None) - Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (\(\mathrm{f}, \mathrm{g}, \mathrm{h}\)) in LSTM. Default values are the same as of corresponding ONNX operators.For example with LeakyRelu, the default alpha is 0.01 .
- activation_beta (Optional [List [float]], default=None) - Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (\(\mathrm{f}, \mathrm{g}, \mathrm{h}\)) in LSTM. Default values are the same as of corresponding ONNX operators.
- activations (Optional [List [str]], default=None) - A list of 3 (or 6 if bidirectional) activation functions for input, output, forget, cell, and hidden. The activation functions must be one of the activation functions specified above. Optional: See the equations for default if not specified.
- clip (Optional [float], default=None) - Cell clip threshold. Clipping bounds the elements of a tensor in the range of [-threshold, +threshold] and is applied to the input of activations. No clip if not specified.
- direction (Optional [str], default='forward') - Specify if the RNN is forward, reverse, or bidirectional. Must be one of forward (default), reverse, or bidirectional.
- hidden_size (Optional [int], default=None) - Number of neurons in the hidden layer
- input_forget (Optional [int], default=0) - Couple the input and forget gates if 1 .

\section*{activation_alpha}

Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (\(f, g, h\)) in LSTM. Default values are the same as of corresponding ONNX operators.For example with LeakyRelu, the default alpha is 0.01 .

\section*{activation_beta}

Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (\(\mathrm{f}, \mathrm{g}, \mathrm{h}\)) in LSTM. Default values are the same as of corresponding ONNX operators.

\section*{activations}

A list of 3 (or 6 if bidirectional) activation functions for input, output, forget, cell, and hidden. The activation functions must be one of the activation functions specified above. Optional: See the equations for default if not specified.
clip
Cell clip threshold. Clipping bounds the elements of a tensor in the range of [-threshold, +threshold] and is applied to the input of activations. No clip if not specified.

\section*{direction}

Specify if the RNN is forward, reverse, or bidirectional. Must be one of forward (default), reverse, or bidirectional.

\section*{hidden_size}

Number of neurons in the hidden layer
input_forget
Couple the input and forget gates if 1.
```

class ONNXLabelEncoder (name, *, default_float=- 0.0, default_int64=- 1, default_string='_Unused',
keys_floats=None, keys_int64s=None, keys_strings=None, val-
ues_floats=None, values_int64s=None, values_strings=None)
Bases: dacemI.onnx. nodes.onnx_op.ONNXOp

```

Maps each element in the input tensor to another value.
 The mapping is determined by the two parallel attributes, 'keys_*' and 'values_*' attribute. The i-th value in the specified 'keys_*' attribute would be mapped to the i-th value in the specified 'values_*' attribute. It implies that input's element type and the element type of the specified 'keys_*' should be identical while the output type is identical to the specified 'values_*' attribute. If an input element can not be found in the specified 'keys_*' attribute, the 'default_*' that matches the specified 'values_*' attribute may be used as its output value.
 Let's consider an example which maps a string tensor to an integer tensor. Assume and 'keys_strings' is ["Amy", "Sally"], 'values_int64s' is [5, 6], and 'default_int64' is ' -1 '. The input ["Dori", "Amy", "Amy", "Sally", "Sally"] would be mapped to \([-1,5,5,6,6] .<b r>\) Since this operator is an one-to-one mapping, its input and output shapes are the same. Notice that only one of 'keys_*'/'values_*' can be set.
 For key look-up, bit-wise comparison is used so even a float NaN can be mapped to a value in 'values_*' attribute.

\section*{Node Inputs}
- \(\mathbf{X}\) (T1, single) - Input data. It can be either tensor or scalar.

\section*{Node Outputs}
- Y (T2, single) - Output data.

\section*{Type Constraints}
- T1 - int 64, float 32
- T2 - int 64, float 32

\section*{Parameters}
- name - the name of the node.
- default_float (Optional [float], default=-0.0) - A float.
- default_int 64 (Optional [int], default=-1) - An integer.
- default_string (Optional [str], default='_Unused') - A string.
- keys_floats (Optional [List [float]], default=None) - A list of floats.
- keys_int64s (Optional [List [int]], default=None) - A list of ints.
- keys_strings (Optional [List [str]], default=None) - A list of strings. One and only one of 'keys_*'s should be set.
- values_floats (Optional [List [float]], default=None) - A list of floats.
- values_int64s (Optional [List [int]], default=None) - A list of ints.
- values_strings (Optional [List [str]], default=None) - A list of strings. One and only one of 'value_*'s should be set.
default_float
A float.
default_int64
An integer.
default_string
A string.
keys_floats
A list of floats.
keys_int64s
A list of ints.
keys_strings
A list of strings. One and only one of 'keys_*'s should be set.
values_floats
A list of floats.
values_int64s
A list of ints.
values_strings
A list of strings. One and only one of 'value_*'s should be set.
class ONNXLeakyRelu (name, *, alpha=0.009999999776482582)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
LeakyRelu takes input data (Tensor \(<\mathrm{T}>\)) and an argument alpha, and produces one output data (Tensor \(<\mathrm{T}>\)) where the function \(f(x)=\) alpha \(* x\) for \(x<0, f(x)=x\) for \(x>=0\), is applied to the data tensor elementwise.

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Input tensor

\section*{Node Outputs}
- Y (T, single) - Output tensor

\section*{Type Constraints}
- T-float16, float 32 , float 64

\section*{Parameters}
- name - the name of the node.
- alpha (Optional [float], default=0.009999999776482582) - Coefficient of leakage.

\section*{alpha}

Coefficient of leakage.
class ONNXLess (name, *)
Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Returns the tensor resulted from performing the less logical operation elementwise on the input tensors \(A\) and \(B\) (with Numpy-style broadcasting support).

This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- A (T, single) - First input operand for the logical operator.
- B (T, single) - Second input operand for the logical operator.

\section*{Node Outputs}
- C (T1, single) - Result tensor.

\section*{Type Constraints}
- T - uint8, uint16, uint 32, uint64, int8, int16, int32, int64, float16, float 32 , float 64
- T1 - bool_

Parameters name - the name of the node.
class ONNXLessOrEqual (name, *)
Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Returns the tensor resulted from performing the less_equal logical operation elementwise on the input tensors \(A\) and \(B\) (with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- A (T, single) - First input operand for the logical operator.
- B (T, single) - Second input operand for the logical operator.

\section*{Node Outputs}
- C (T1, single) - Result tensor.

\section*{Type Constraints}
- T - uint8, uint16, uint 32, uint 64, int8, int16, int32, int64, float16, float 32 , float 64
- T1-bool_

Parameters name - the name of the node.
class ONNXLinearClassifier(name, *, classlabels_ints=None, classlabels_strings=None, coefficients, intercepts \(=\) None, multi_class \(=0\), post_transform = 'NONE')
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Linear classifier

\section*{Node Inputs}
- \(\mathbf{X}\) (T1, single) - Data to be classified.

\section*{Node Outputs}
- Y (T2, single) - Classification outputs (one class per example).
- Z (Z_constraint, single) - Classification scores ([N,E] - one score for each class and example

\section*{Type Constraints}
- T1 - float 32 , float 64 , int 64 , int 32
- T2 - int 64
- Z_constraint - float 32

\section*{Parameters}
- name - the name of the node.
- classlabels_ints (Optional [List [int]], default=None) - Class labels when using integer labels. One and only one 'classlabels' attribute must be defined.
- classlabels_strings (Optional [List [str]], default=None) - Class labels when using string labels. One and only one 'classlabels' attribute must be defined.
- coefficients (List [float]) - A collection of weights of the model(s).
- intercepts (Optional [List [float]], default=None) - A collection of intercepts.
- multi_class (Optional [int], default=0) - Indicates whether to do OvR or multinomial (\(0=\mathrm{OvR}\) is the default).
- post_transform (Optional [str], default='NONE') - Indicates the transform to apply to the scores vector.
One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'
classlabels_ints
Class labels when using integer labels. One and only one 'classlabels' attribute must be defined.

\section*{classlabels_strings}

Class labels when using string labels. One and only one 'classlabels' attribute must be defined.

\section*{coefficients}

A collection of weights of the model(s).

\section*{intercepts}

A collection of intercepts.

\section*{multi_class}

Indicates whether to do OvR or multinomial \((0=\mathrm{OvR}\) is the default).

\section*{post_transform}

Indicates the transform to apply to the scores vector.
One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'
class ONNXLinearRegressor (name, *, coefficients=None, intercepts=None, post_transform='NONE', targets \(=1\))
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Generalized linear regression evaluation.
 If targets is set to 1 (default) then univariate regression is performed.
 If targets is set to \(M\) then \(M\) sets of coefficients must be passed in as a sequence and M results will be output for each input n in \(\mathrm{N} .<b r>\) The coefficients array is of length n , and the coefficients for each target are contiguous. Intercepts are optional but if provided must match the number of targets.

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Data to be regressed.

\section*{Node Outputs}
- Y (Y_constraint, single) - Regression outputs (one per target, per example).

\section*{Type Constraints}
- T-float 32 , float 64, int 64, int 32
- Y_constraint - float 32

\section*{Parameters}
- name - the name of the node.
- coefficients (Optional [List [float]], default=None) - Weights of the model(s).
- intercepts (Optional [List [float]], default=None) - Weights of the intercepts, if used.
- post_transform (Optional [str], default='NONE') - Indicates the transform to apply to the regression output vector.
One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'
- targets (Optional [int], default=1) - The total number of regression targets, 1 if not defined.

\section*{coefficients}

Weights of the model(s).
intercepts
Weights of the intercepts, if used.
post_transform
Indicates the transform to apply to the regression output vector.
One of 'NONE,' 'SOFTMAX,' 'LO-
GISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'

\section*{targets}

The total number of regression targets, 1 if not defined.

\section*{class ONNXLog (name, *)}

Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Calculates the natural log of the given input tensor, element-wise.

\section*{Node Inputs}
- input (T , single) - Input tensor

\section*{Node Outputs}
- output (T, single) - The natural log of the input tensor computed element-wise

\section*{Type Constraints}
- T-float16, float32, float64

Parameters name - the name of the node.
class ONNXLogSoftmax (name, *, axis=1)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
The operator computes the logsoftmax (log of softmax) values for each layer in the batch of the given input.

The input does not need to explicitly be a 2 D vector; rather, it will be coerced into one. For an arbitrary ndimensional tensor input in \(\left[a _0, a _1, \ldots, a _\{k-1\}, a _k, \ldots, a _\{n-1\}\right]\) and \(k\) is the axis provided, then input will be coerced into a 2 -dimensional tensor with dimensions \(\left[a_{-} 0 * \ldots * a_{-}\{k-1\}\right.\), \(\left.a_{-} k * \ldots * a _\{n-1\}\right]\). For the default case where axis=1, this means the input tensor will be coerced into a 2D tensor of dimensions [a_0, a_1 * ... * a_\{n-1\}], where a_0 is often the batch size. In this situation, we must have a_0=N and a_1 * ... * \(\mathrm{a}_{-}\{\mathrm{n}-1\}=\mathrm{D}\). Each of these dimensions must be matched correctly, or else the operator will throw errors. The output tensor has the same shape and contains the logsoftmax values of the corresponding input.

\section*{Node Inputs}
- input (T , single) - The input tensor that's coerced into a 2D matrix of size (NxD) as described above.

\section*{Node Outputs}
- output (T, single) - The output values with the same shape as input tensor (the original size without coercion).

\section*{Type Constraints}
- T-float16, float 32 , float 64

\section*{Parameters}
- name - the name of the node.
- axis (Optional [int], default=1) - Describes the axis of the inputs when coerced to 2D; defaults to one because the 0th axis most likely describes the batch_size. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where \(\mathrm{r}=\) rank(input).

\section*{axis}

Describes the axis of the inputs when coerced to 2 D ; defaults to one because the 0th axis most likely describes the batch_size. Negative value means counting dimensions from the back. Accepted range is [-r, \(r-1]\) where \(r=\operatorname{rank}\) (input).
class ONNXLpNormalization (name, *, axis \(=-1, p=2\))
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Given a matrix, apply Lp-normalization along the provided axis.

\section*{Node Inputs}
- input (T , single) - Input matrix

\section*{Node Outputs}
- output (T, single) - Matrix after normalization

\section*{Type Constraints}
- T-float16, float 32, float 64

\section*{Parameters}
- name - the name of the node.
- axis (Optional [int], default=-1) - The axis on which to apply normalization, -1 mean last axis.
- \(\mathbf{p}\) (Optional [int], default=2) - The order of the normalization, only 1 or 2 are supported.
axis
The axis on which to apply normalization, -1 mean last axis.
p
The order of the normalization, only 1 or 2 are supported.
```

class ONNXLpPool (name, *, auto_pad='NOTSET', kernel_shape, p=2, pads=None, strides=None)

```

Bases: daceml.onnx.nodes.onnx_op. ONNXOp
LpPool consumes an input tensor X and applies Lp pooling across the tensor according to kernel sizes, stride sizes, and pad lengths. Lp pooling consisting of computing the Lp norm on all values of a subset of the input tensor according to the kernel size and downsampling the data into the output tensor Y for further processing.

\section*{Node Inputs}
- X (T, single) - Input data tensor from the previous operator; dimensions for image case are (\(\mathrm{N} \times \mathrm{C} \times \mathrm{H} \times \mathrm{W}\)), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (\(\mathrm{N} \times \mathrm{C} \times \mathrm{D} 1 \times \mathrm{D} 2 \ldots \mathrm{Dn}\)), where N is the batch size.

\section*{Node Outputs}
- Y (T, single) - Output data tensor from Lp pooling across the input tensor. Dimensions will vary based on various kernel, stride, and pad sizes.

\section*{Type Constraints}
- T-float16, float 32, float64

\section*{Parameters}
- name - the name of the node.
- auto_pad (Optional [str], default='NOTSET') - auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding.
- kernel_shape (List [int]) - The size of the kernel along each axis.
- \(p\) (Optional [int], default=2) - p value of the Lp norm used to pool over the input data.
- pads (Optional [List [int]], default=None) - Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0 . The value represent the number of pixels added to the beginning and end part of the corresponding axis. pads format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis \(i\) and xi_end, the number of pixels added at the end of axis \(i\). This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.
- strides (Optional [List [int]], default=None) - Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.

\section*{auto_pad}
auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is
NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding.

\section*{kernel_shape}

The size of the kernel along each axis.

\section*{p}
p value of the Lp norm used to pool over the input data.

\section*{pads}

Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0 . The value represent the number of pixels added to the beginning and end part of the corresponding axis. pads format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis \(i\) and xi_end, the number of pixels added at the end of axis \(i\). This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.

\section*{strides}

Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.
class ONNXMatMul (name, *)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/ numpy.matmul.html

\section*{Node Inputs}
- A (T, single) - N -dimensional matrix A
- B (T, single) - N-dimensional matrix B

\section*{Node Outputs}
- \(\mathbf{Y}\) (T , single) - Matrix multiply results from \(\mathrm{A} * \mathrm{~B}\)

\section*{Type Constraints}
- T-float16, float 32 , float 64 , uint 32 , uint 64 , int 32 , int 64

Parameters name - the name of the node.
class ONNXMatMulInteger (name, *)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/ numpy.matmul.html. The production MUST never overflow. The accumulation may overflow if and only if in 32 bits.

\section*{Node Inputs}
- A (T1, single) - N-dimensional matrix A
- B (T2, single) - N-dimensional matrix B
- a_zero_point (T1, optional) - Zero point tensor for input 'A'. It's optional and default value is 0 . It could be a scalar or a 1-D tensor, which means a per-tensor or per-row quantization. If it's a 1-D tensor, its number of elements should be equal to the number of rows of input 'A'.
- b_zero_point (T2, optional) - Zero point tensor for input 'B'. It's optional and default value is 0 . It could be a scalar or a 1-D tensor, which means a per-tensor or per-column quantization. If it's a 1-D tensor, its number of elements should be equal to the number of columns of input ' \(B\) '.

\section*{Node Outputs}
- \(\mathbf{Y}(T 3\), single \()\) - Matrix multiply results from \(A * B\)

\section*{Type Constraints}
- T1 - int 8 , uint 8
- T2 - int 8, uint 8
- T3 - int 32

Parameters name - the name of the node.
class ONNXMax (name, *)
Bases: dacemI.onnx. nodes.onnx_op.ONNXOp

Element-wise max of each of the input tensors (with Numpy-style broadcasting support). All inputs and outputs must have the same data type. This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- data_0 (T, variadic) - List of tensors for max.

\section*{Node Outputs}
- max (T, single) - Output tensor.

\section*{Type Constraints}
- T - uint8, uint16, uint 32, uint64, int8, int16, int32, int64, float16, float 32 , float 64

Parameters name - the name of the node.
class ONNXMaxPool (name, *, auto_pad='NOTSET', ceil_mode \(=0\), dilations \(=\) None, kernel_shape, pads \(=\) None, storage_order \(=0\), strides \(=\) None \()\)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
MaxPool consumes an input tensor X and applies max pooling across the tensor according to kernel sizes, stride sizes, and pad lengths. max pooling consisting of computing the max on all values of a subset of the input tensor according to the kernel size and downsampling the data into the output tensor Y for further processing. The output spatial shape will be following: \(\quad\) output_spatial_shape[i] = floor((input_spatial_shape[i] + pad_shape[i] - ((kernel_spatial_shape[i] - 1) * dilations[i] + 1)) / strides_spatial_shape[i] + 1) ` or output_spatial_shape[i] = ceil((input_spatial_shape[i] + pad_shape[i] - ((kernel_spatial_shape[i] - 1) * dilations[i] + 1)) / strides_spatial_shape[i] + 1) `if ceil_mode is enabled
* pad_shape[i] is sum of pads along axis i
auto_pad is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following: `VALID: output_spatial_shape[i] = ceil((input_spatial_shape[i] - ((kernel_spatial_shape[i] - 1) * dilations[i] + 1) + 1) / strides_spatial_shape[i]) SAME_UPPER or SAME_LOWER: output_spatial_shape[i] = ceil(input_spatial_shape[i] / strides_spatial_shape[i]) ' And pad shape will be following if SAME_UPPER or SAME_LOWER: \(\quad\) pad_shape[i] = (output_spatial_shape[i] - 1) * strides_spatial_shape[i] + ((kernel_spatial_shape[i] - 1) * dilations[i] + 1) - input_spatial_shape[i] • The output of each pooling window is maximum number of elements exclude pad.

\section*{Node Inputs}
- X (T, single) - Input data tensor from the previous operator; dimensions for image case are (\(\mathrm{N} \times \mathrm{C} \times \mathrm{H} \times \mathrm{W}\)), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (\(\mathrm{N} \times \mathrm{C} \times \mathrm{D} 1 \times \mathrm{D} 2 \ldots \mathrm{Dn}\)), where N is the batch size. Optionally, if dimension denotation is in effect, the operation expects the input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].

\section*{Node Outputs}
- Y (T, single) - Output data tensor from average or max pooling across the input tensor. Dimensions will vary based on various kernel, stride, and pad sizes. Floor value of the dimension is used
- Indices (I, optional) - Indices tensor from max pooling across the input tensor. The dimensions of indices are the same as output tensor. The values in indices of are the indices of the selected values during pooling. The indices are computed as flatten 1-D tensor, and the indices do not consider padding. So the values in indices are in [\(0, \mathrm{~N} \times \mathrm{C} \times \mathrm{D} 1 \times \ldots \times \mathrm{Dn}\)).

\section*{Type Constraints}
- T-float16, float 32 , float 64, int 8 , uint 8
- I - int 64

\section*{Parameters}
- name - the name of the node.
- auto_pad (Optional [str], default='NOTSET') - auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding.
- ceil_mode (Optional [int], default=0) - Whether to use ceil or floor (default) to compute the output shape.
- dilations (Optional [List [int]], default=None) - Dilation value along each spatial axis of filter. If not present, the dilation defaults to 1 along each spatial axis.
- kernel_shape (List [int]) - The size of the kernel along each axis.
- pads (Optional [List [int]], default=None) - Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0 . The value represent the number of pixels added to the beginning and end part of the corresponding axis. pads format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis \(i\) and xi_end, the number of pixels added at the end of axis \(i\). This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.
- storage_order (Optional [int], default=0) - The storage order of the tensor. 0 is row major, and 1 is column major.
- strides (Optional [List [int]], default=None) - Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.

\section*{auto_pad}
auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding.

\section*{ceil_mode}

Whether to use ceil or floor (default) to compute the output shape.

\section*{dilations}

Dilation value along each spatial axis of filter. If not present, the dilation defaults to 1 along each spatial axis.

\section*{kernel_shape}

The size of the kernel along each axis.
pads
Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to

0 . The value represent the number of pixels added to the beginning and end part of the corresponding axis. pads format should be as follow [x1_begin, x2_begin... \(\mathrm{x} 1 _\)end, \(\mathrm{x} 2 _\)end,...], where xi_begin the number of pixels added at the beginning of axis \(i\) and xi_end, the number of pixels added at the end of axis \(i\). This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.
storage_order
The storage order of the tensor. 0 is row major, and 1 is column major.
```

    strides
    Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.
    class ONNXMaxRoiPool (name, *,pooled_shape, spatial_scale=1.0)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp

```

ROI max pool consumes an input tensor X and region of interests (RoIs) to apply max pooling across each RoI, to produce output 4-D tensor of shape (num_rois, channels, pooled_shape[0], pooled_shape[1]).

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Input data tensor from the previous operator; dimensions for image case are (\(\mathrm{N} \times \mathrm{C} \times \mathrm{H} \times \mathrm{W}\)), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data.
- rois (T, single) - RoIs (Regions of Interest) to pool over. Should be a 2-D tensor of shape (num_rois, 5) given as [[batch_id, x1, y1, x2, y2], ...].

\section*{Node Outputs}
- Y (T, single) - RoI pooled output 4-D tensor of shape (num_rois, channels, pooled_shape[0], pooled_shape[1]).

\section*{Type Constraints}
- T-float16, float 32, float 64

\section*{Parameters}
- name - the name of the node.
- pooled_shape (List [int]) - ROI pool output shape (height, width).
- spatial_scale (Optional [float], default=1.0) - Multiplicative spatial scale factor to translate ROI coordinates from their input scale to the scale used when pooling.
pooled_shape
ROI pool output shape (height, width).
spatial_scale
Multiplicative spatial scale factor to translate ROI coordinates from their input scale to the scale used when pooling.
class ONNXMaxUnpool (name, *, kernel_shape, pads \(=\) None, strides \(=\) None)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
MaxUnpool essentially computes the partial inverse of the MaxPool op. The input information to this op is typically the the output information from a MaxPool op. The first input tensor X is the tensor that needs to be unpooled, which is typically the pooled tensor (first output) from MaxPool. The second input tensor, I, contains the indices to the (locally maximal) elements corrsponding to the elements in the first input tensor X. Input tensor I is typically the second output of the MaxPool op. The third (optional) input is a tensor that specifies the output size of the unpooling operation.

\section*{MaxUnpool is intended to do 'partial' inverse of the MaxPool op. 'Partial' because all the non-maximal} values from the original input to MaxPool are set to zero in the output of the MaxUnpool op. Pooling the result of an unpooling operation should give back the original input to the unpooling op.
MaxUnpool can produce the same output size for several input sizes, which makes unpooling op ambiguous. The third input argument, output_size, is meant to disambiguate the op and produce output tensor of known/predictable size.

In addition to the inputs, MaxUnpool takes three attributes, namely kernel_shape, strides, and pads, which define the exact unpooling op. The attributes typically have the same values as the corrsponding pooling op that the unpooling op is trying to invert.

\section*{Node Inputs}
- \(\mathbf{X}\) (T1, single) - Input data tensor that has to be unpooled. This tensor is typically the first output of the MaxPool op.Dimensions for image case are (\(\mathrm{N} \times \mathrm{C} \times \mathrm{H} \times \mathrm{W}\)), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non-image case, the dimensions are in the form of (\(\mathrm{N} \times \mathrm{C} \times \mathrm{D} 1 \times \mathrm{D} 2 \ldots \mathrm{Dn}\)), where N is the batch size. Optionally, if dimension denotation is in effect, the operation expects the input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].
- I (T2, single) - Input data tensor containing the indices corresponding to elements in the first input tensor X.This tensor is typically the second output of the MaxPool op.Dimensions must be the same as input tensor \(X\). The indices are linear, i.e. computed considering the tensor as flattened 1-D tensor, assuming row-major storage. Also, the linear indices should not consider padding. So the values in indices are in the range \([0, \mathrm{~N} \times \mathrm{C} \times \mathrm{D} 1 \mathrm{x} \ldots \mathrm{x} \mathrm{Dn})\).
- output_shape (T2, optional) - The shape of the output can be explicitly set which will cause pads values to be auto generated. If 'output_shape' is specified, 'pads' values are ignored.

\section*{Node Outputs}
- output (T1, single) - Output data tensor that contains the result of the unpooling.

\section*{Type Constraints}
- T1 - float16, float32, float 64
- T2 - int 64

\section*{Parameters}
- name - the name of the node.
- kernel_shape (List [int]) - The size of the kernel along each axis.
- pads (Optional [List [int]], default=None) - Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0 . The value represent the number of pixels added to the beginning and end part of the corresponding axis. pads format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis \(i\) and xi_end, the number of pixels added at the end of axis \(i\). This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.
- strides (Optional [List [int]], default=None) - Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.

\section*{kernel_shape}

The size of the kernel along each axis.

\section*{pads}

Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0 . The value represent the number of pixels added to the beginning and end part of the corresponding axis. pads format should be as follow [x1_begin, x2_begin... \(\mathrm{x} 1 _\)end, \(\mathrm{x} 2 _\)end,...], where xi_begin the number of pixels added at the beginning of axis \(i\) and xi_end, the number of pixels added at the end of axis \(i\). This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.

\section*{strides}

Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.

\section*{class ONNXMean (name, *)}

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Element-wise mean of each of the input tensors (with Numpy-style broadcasting support). All inputs and outputs must have the same data type. This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- data_0 (T , variadic) - List of tensors for mean.

\section*{Node Outputs}
- mean (T, single) - Output tensor.

\section*{Type Constraints}
- T-float16, float 32, float 64

Parameters name - the name of the node.
class ONNXMeanVarianceNormalization (name, *, axes=[0, 2, 3])
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
A MeanVarianceNormalization Function: Perform mean variance normalization on the input tensor \(X\) using formula:
` \((X-E X) / \operatorname{sqrt}(E(X-E X) \wedge 2)\)

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Input tensor

\section*{Node Outputs}
- Y (T, single) - Output tensor

\section*{Type Constraints}
- T-float16, float 32 , float 64

\section*{Parameters}
- name - the name of the node.
- axes (Optional [List [int]], default=[0, 2, 3]) - A list of integers, along which to reduce. The default is to caculate along axes \([0,2,3]\) for calculating mean and variance along each channel. Two variables with the same C-coordinate are associated with the same mean and variance.
axes
A list of integers, along which to reduce. The default is to caculate along axes [\(0,2,3\)] for calculating mean and variance along each channel. Two variables with the same C-coordinate are associated with the same mean and variance.
class ONNXMin(name, *)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Element-wise min of each of the input tensors (with Numpy-style broadcasting support). All inputs and outputs must have the same data type. This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- data_0 (T, variadic) - List of tensors for min.

\section*{Node Outputs}
- \(\min (\mathrm{T}\), single) - Output tensor.

\section*{Type Constraints}
- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float 64

Parameters name - the name of the node.
class ONNXMod (name, *, fmod=0)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Performs element-wise binary modulus (with Numpy-style broadcasting support). The sign of the remainder is the same as that of the Divisor.

Mod operator can also behave like C fmod() or numpy.fmod. In this case, the sign of the remainder however, will be the same as the Dividend (in contrast to integer mod). To force a behavior like numpy.fmod() an 'fmod' Attribute is provided. This attribute is set to 0 by default causing the behavior to be like integer mod. Setting this attribute to 1 causes the remainder to be calculated similar to that of numpy.fmod().
If the input type is floating point, then fmod attribute must be set to 1 .
In case of dividend being zero, the results will be platform dependent.
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- A (T, single) - Dividend tensor
- B (T, single) - Divisor tensor

\section*{Node Outputs}
- C (T, single) - Remainder tensor

\section*{Type Constraints}
- T - uint8, uint16, uint 32, uint64, int8, int16, int32, int64, float16, float 32 , float 64

\section*{Parameters}
- name - the name of the node.
- fmod (Optional [int], default=0) - Whether the operator should behave like fmod (default=0 meaning it will do integer mods); Set this to 1 to force fmod treatment

\section*{fmod}

Whether the operator should behave like fmod (default=0 meaning it will do integer mods); Set this to 1 to force fmod treatment
class ONNXMomentum (name, *, alpha, beta, mode, norm_coefficient)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Compute one iteration of stochastic gradient update with momentum. This operator can conduct the optimization of multiple tensor variables.

Let's define the behavior of this operator. As you can imagine, SG with momentum requires several parameters:
- The learning-rate "R".
- The update count "T". That is, the number of conducted training iterations. It should be zero in the first training iteration.
- A L2-norm regularization coefficient "norm_coefficient".
- A decay coefficient of previous accumulated gradient (i.e., momentum) "alpha".
- The scaling coefficient of current gradient "beta".
- An attribute to choose either standard momentum or Nesterov's momentum "mode" should be used.

For the sake of simplicity, assume that there is only one tensor (called " X ") to be optimized. Other necessary inputs are "X"'s gradient (called "G") and "X"'s momentum (called "V"). This Momentum operator maps all these inputs to the new value of "X" (called "X_new") and its new momentum (called "V_new").
This operator supports two different momentum algorithms. Set the attribute "mode" to "nesterov" if Nesterov's momentum is desired. Otherwise, set the attribute "model" to "standard" to use standard momentum. Computation details are described subsequently.
Let "+", "-", "*", and " \(/ "\) are all element-wise operations with numpy-style broadcasting.
Pseudo code for SG with standard momentum:
// Add gradient of \(0.5 *\) norm_coefficient \(*\|\mathrm{X}\|^{\wedge} 2\), where \(\|\mathrm{X}\|\) is the sum of squared // values of all elements in X. G_regularized = norm_coefficient * X + G
\(/ /\) In the first training iteration, beta should always be 1 . beta_adjusted \(=\mathrm{T}>0\) ? beta : 1
// Compute the current momentum based on previous momentum and the current gradient.
V_new \(=\) alpha \(* V+\) beta_adjusted \(*\) G_regularized
// Update X. X_new = X - R * V_new
Pseudo code for SG with Nesterov's momentum:
// Add gradient of \(0.5 *\) norm_coefficient \(*\|\mathrm{X}\| \wedge 2\), where \(\|\mathrm{X}\|\) is the sum of squared // values of all elements in X. G_regularized \(=\) norm_coefficient \(* X+G\);
// In the first training iteration, beta should always be 1 . beta_adjusted \(=T>0\) ? beta : 1
// Compute the current momentum based on previous momentum and the current gradient.
V_new \(=\) alpha \(* V+\) beta_adjusted \(*\) G_regularized;
// Compute final update direction and then update X. X_new = X - R * (G_regularized + alpha * V_new)
If one assign this operators to optimize multiple inputs, for example, "X_1" and "X_2". The same pseudo code would be extended to handle all tensors jointly. More specifically, we can view " X " as
a concatenation of "X_1" and "X_2" (of course, their gradient and accumulate gradient should be concatenated too) and then our pseudo code becomes applicable.

\section*{Node Inputs}
- \(\mathbf{R}\) (T1, single) - The learning rate.
- T (T2, single) - Update count of "X". It should be a scalar.
- inputs (T3, variadic) - It sequentially contains the current values of optimized tensors, then their gradient tensors, and finally their momentum tensors. For example, if two tensors "X_1" and "X_2" are optimized, The expected input list would be ["X_1", "X_2", gradient of "X_1", gradient of "X_2", momentum of "X_1", momentum of "X_2"].

\section*{Node Outputs}
- outputs (T3, variadic) - It sequentially contains the new values of optimized tensors and then the new values of their momentum tensors. For example, if two tensors "X_1" and "X_2" are optimized, the output list would be [new value of "X_1", new value of "X_2" new momentum of "X_1", new momentum of "X_2"].

\section*{Type Constraints}
- T1 - float 32, float 64
- T2 - int 64
- T3 - float 32, float 64

\section*{Parameters}
- name - the name of the node.
- alpha (float) - The decay factor of momentum. It should be a scalar.
- beta (float) - The coefficient of gradient in computing new momentum. It should be a scalar.
- mode (str) - Its value should be either "nesterov" or "standard". The value "nesterov" leads to the use of Nesterov's momentum while "standard" invokes stochastic gradient method using standard momentum
- norm_coefficient (float) - Coefficient of 0.5 * norm_coefficient * \|X\|^2.

\section*{alpha}

The decay factor of momentum. It should be a scalar.

\section*{beta}

The coefficient of gradient in computing new momentum. It should be a scalar.
mode
Its value should be either "nesterov" or "standard". The value "nesterov" leads to the use of Nesterov's momentum while "standard" invokes stochastic gradient method using standard momentum
norm_coefficient
Coefficient of 0.5 * norm_coefficient * \(\|X\|^{\wedge} 2\).
class ONNXMul (name, *)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Performs element-wise binary multiplication (with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- A (T, single) - First operand.
- B (T, single) - Second operand.

\section*{Node Outputs}
- \(\mathbf{C}\) (T, single) - Result, has same element type as two inputs

\section*{Type Constraints}
- T-uint 32, uint 64, int 32, int 64, float16, float 32, float 64

Parameters name - the name of the node.
class ONNXMultinomial (name, *, dtype \(=6\), sample_size \(=1\), seed \(=\) None)
Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Generate a tensor of samples from a multinomial distribution according to the probabilities of each of the possible outcomes.

\section*{Node Inputs}
- input (T1, single) - Input tensor with shape [batch_size, class_size], where class_size is the number of all possible outcomes. Each value along the axis zero represents the unnormalized log-probability of each corresponding outcome in a batch.

\section*{Node Outputs}
- output (T2, single) - Output tensor with shape [batch_size, sample_size], where sample_size is the number of times to sample. Each value along the axis zero represents the outcome of the corresponding sample in a batch.

\section*{Type Constraints}
- T1 - float16, float 32 , float 64
- T2 - int 32 , int 64

\section*{Parameters}
- name - the name of the node.
- dtype (Optional [int], default=6) - (Optional) The data type for the elements of the output tensor, if not specified, we will use int 32 .
- sample_size (Optional [int], default=1) - Number of times to sample.
- seed (Optional [float], default=None) - (Optional) Seed to the random generator, if not specified we will auto generate one.

\section*{dtype}
(Optional) The data type for the elements of the output tensor, if not specified, we will use int 32.
sample_size
Number of times to sample.
seed
(Optional) Seed to the random generator, if not specified we will auto generate one.

\section*{class ONNXNeg (name, *)}

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Neg takes one input data (Tensor \(<\mathrm{T}>\)) and produces one output data (Tensor<T>) where each element flipped sign, \(y=-x\), is applied to the tensor elementwise.

\section*{Node Inputs}
- X (T, single) - Input tensor

\section*{Node Outputs}
- Y (T, single) - Output tensor

\section*{Type Constraints}
- T - float 32, int 32, int 8, int16, int 64, float16, float 64

Parameters name - the name of the node.
class ONNXNegativeLogLikelihoodLoss (name, *, ignore_index=None, reduction='mean')
Bases: daceml.onnx.nodes.onnx_op. ONNXOp
A NegativeLogLikelihoodLoss operator computes (weighted) negative log likelihood loss. Its "input" tensor has the shape of (\(\mathrm{N}, \mathrm{C}, \mathrm{d} 1, \mathrm{~d} 2, \ldots, \mathrm{dk}\)) where \(\mathrm{k}>=0\). The "input" tensor contains log-probabilities for input[n , :, d_1, d_2,..., d_k] being in a class of \([0, \mathrm{C}\)). The operator's "target" input tensor has the shape of (\(\mathrm{N}, \mathrm{d} 1, \mathrm{~d} 2\), \(\ldots, \mathrm{dk}\)). It encodes class labels (one of C classes) or it may contain a special value (indicated by an attribute ignore_index) for N x d \(1 \mathrm{xd} 2 \mathrm{x} \ldots \mathrm{x}\) dk samples. The loss value for input \(\left[\mathrm{n},:, \mathrm{d} _1, \mathrm{~d} _2, \ldots \mathrm{~d} _\mathrm{k}\right]\) being classified as class \(c=\) target \([n]\left[d _1\right]\left[d _2\right] \ldots\left[d _k\right]\) is computed as:
```

loss[n][d_1][d_2]...[d_k] = -input[n][c][d_1][d_2]. .. [d_k].

```

When an optional "weight" is provided, the sample loss is calculated as:
loss[n][d_1][d_2]... [d_k] = -input[n][c][d_1][d_2]... [d_k] * weight[c].
loss is zero for the case when target-value equals ignore_index.
loss[n][d_1][d_2]... [d_k] = 0, when target[n][d_1][d_2]... [d_k] = ignore_index
If "reduction" attribute is set to "none", the operator's output will be the above loss with shape (\(\mathrm{N}, \mathrm{d} 1, \mathrm{~d} 2, \ldots\), dk). If "reduction" attribute is set to "mean" (the default attribute value), the output loss is (weight) averaged:
mean(loss), if "weight" is not provided,
or if weight is provided,
sum(loss) / sum(weight[target[n][d_1][d_2]... [d_k]]]), for all samples.
If "reduction" attribute is set to "sum", the output is a scalar: sum(loss).
See also https://pytorch.org/docs/stable/nn.html\#torch.nn.NLLLoss.
Example 1:
\(/ /\) negative \(\log\) likelihood loss, "none" reduction \(\mathrm{N}, \mathrm{C}, \mathrm{d} 1=2,3,2\) input \(=[[[1.0,2.0],[2.0,2.0],[3.0\), 2.0]],
[[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
target \(=[[2,1],[0,2]]\)
loss \(=\mathrm{np} . z \operatorname{eros}((\mathrm{~N}, \mathrm{~d} 1))\) for n in range(N\()\) :
for d_1 in range(d1): \(\mathrm{c}=\) target[n][d_1] loss[n][d_1] = -input[n][c][d_1]
// print(loss) // [[-3. -2.] // [-0. -2.]]
Example 2:
\(/ /\) weighted negative \(\log\) likelihood loss, sum reduction \(\mathrm{N}, \mathrm{C}, \mathrm{d} 1=2,3,2\) input \(=[[[1.0,2.0],[2.0\), 2.0], [3.0, 2.0]],
[[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
target \(=[[2,1],[0,2]]\) weight \(=[0.2,0.3,0.1]\) loss \(=n p . z e r o s((N, d 1))\) for \(n\) in range \((N)\) :
for d_1 in range(d1): \(c=\operatorname{target}[n]\left[d _1\right] \operatorname{loss}[n]\left[d _1\right]=-\operatorname{input}[n][c]\left[d _1\right] *\) weight \([c]\)
loss \(=\) np.sum(loss) \(/ / \operatorname{print}(\) loss \() / /-1.1\)
Example 3:
\(/ /\) weighted negative \(\log\) likelihood loss, mean reduction \(\mathrm{N}, \mathrm{C}, \mathrm{d} 1=2,3,2\) input \(=[[[1.0,2.0],[2.0\), 2.0], [3.0, 2.0]],
[[0.0, 1.0], [2.0, 2.0], [1.0, 2]]]
target \(=[[2,1],[0,2]]\) weight \(=[0.2,0.3,0.1] \operatorname{loss}=n p \cdot z e r o s((N, d 1))\) weight_total \(=0\) for \(n\) in range(N):
for d_1 in range(d1): \(c=\operatorname{target}[n]\left[d _1\right] \operatorname{loss}[n]\left[d _1\right]=-i n p u t[n][c]\left[d _1\right] *\) weight[\([c]\) weight_total \(=\) weight_total + weight[\([\mathrm{c}]\)
loss \(=\) np.sum(loss) \(/\) weight_total \(/ / \operatorname{print}(\) loss \() / /-1.57\)

\section*{Node Inputs}
- input (T , single) - Input tensor of shape (\(\mathrm{N}, \mathrm{C}\)) or (\(\mathrm{N}, \mathrm{C}, \mathrm{d} 1, \mathrm{~d} 2, \ldots, \mathrm{dk}\)).
- target (Tind, single) - Target tensor of shape (N) or (\(\mathrm{N}, \mathrm{d} 1, \mathrm{~d} 2, \ldots, \mathrm{dk}\)). Target element value shall be in range of \([0, \mathrm{C})\). If ignore_index is specified, it may have a value outside [0 , C) and the target values should either be in the range \([0, \mathrm{C})\) or have the value ignore_index.
- weight (T, optional) - Optional rescaling weight tensor. If given, it has to be a tensor of size C. Otherwise, it is treated as if having all ones.

\section*{Node Outputs}
- loss (T, single) - The negative log likelihood loss

\section*{Type Constraints}
- T-float16, float 32 , float 64
- Tind - int 32 , int 64

\section*{Parameters}
- name - the name of the node.
- ignore_index (Optional [int], default=None) - Specifies a target value that is ignored and does not contribute to the input gradient. It's an optional value.
- reduction (Optional [str], default='mean') - Type of reduction to apply to loss: none, sum, mean (default). 'none': the output is the loss for each sample. 'sum': the output will be summed. 'mean': the sum of the output will be divided by the sum of applied weights.

\section*{ignore_index}

Specifies a target value that is ignored and does not contribute to the input gradient. It's an optional value.

\section*{reduction}

Type of reduction to apply to loss: none, sum, mean (default). 'none': the output is the loss for each sample. 'sum': the output will be summed. 'mean': the sum of the output will be divided by the sum of applied weights.
```

class ONNXNonMaxSuppression (name, *, center_point_box=0)

```

Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Filter out boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. Bounding boxes with score less than score_threshold are removed. Bounding box format is indicated by attribute center_point_box. Note that this algorithm is agnostic to where the origin is in the coordinate system and more generally is invariant to orthogonal transformations and translations of the coordinate system; thus translating or reflections of the coordinate system result in the same boxes being selected by the algorithm. The selected_indices output is a set of integers indexing into the input collection of bounding boxes representing the selected boxes. The bounding box coordinates corresponding to the selected indices can then be obtained using the Gather or GatherND operation.

\section*{Node Inputs}
- boxes (boxes_constraint, single) - An input tensor with shape [num_batches, spatial_dimension, 4]. The single box data format is indicated by center_point_box.
- scores (scores_constraint, single) - An input tensor with shape [num_batches, num_classes, spatial_dimension]
- max_output_boxes_per_class (max_output_boxes_per_class_constraint, optional) - Integer representing the maximum number of boxes to be selected per batch per class. It is a scalar. Default to 0 , which means no output.
- iou_threshold (iou_threshold_constraint, optional) - Float representing the threshold for deciding whether boxes overlap too much with respect to IOU. It is scalar. Value range [0, 1]. Default to 0 .
- score_threshold (score_threshold_constraint, optional) - Float representing the threshold for deciding when to remove boxes based on score. It is a scalar.

\section*{Node Outputs}
- selected_indices (selected_indices_constraint, single) - selected indices from the boxes tensor. [num_selected_indices, 3], the selected index format is [batch_index, class_index, box_index].

\section*{Type Constraints}
- boxes_constraint - float 32
- scores_constraint - float 32
- max_output_boxes_per_class_constraint - int 64
- iou_threshold_constraint - float 32
- score_threshold_constraint - float 32
- selected_indices_constraint - int 64

\section*{Parameters}
- name - the name of the node.
- center_point_box (Optional [int], default=0) - Integer indicate the format of the box data. The default is 0.0 - the box data is supplied as [y1, x1, y 2 , x 2] where (\(\mathrm{y} 1, \mathrm{x} 1\)) and (\(y 2, x 2\)) are the coordinates of any diagonal pair of box corners and the coordinates can be provided as normalized (i.e., lying in the interval \([0,1]\)) or absolute. Mostly used for TF models. 1 - the box data is supplied as [x_center, y_center, width, height]. Mostly used for Pytorch models.
center_point_box
Integer indicate the format of the box data. The default is \(0.0-\) the box data is supplied as \([y 1, x 1, y 2\),
\(x 2\)] where \((y 1, x 1)\) and (\(y 2, x 2\)) are the coordinates of any diagonal pair of box corners and the coordinates can be provided as normalized (i.e., lying in the interval \([0,1]\)) or absolute. Mostly used for TF models. 1 - the box data is supplied as [x_center, y_center, width, height]. Mostly used for Pytorch models.
class ONNXNonZero (name, *)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Returns the indices of the elements that are non-zero (in row-major order - by dimension). NonZero behaves similar to numpy.nonzero: https://docs.scipy.org/doc/numpy/reference/generated/numpy. nonzero.html

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - input

\section*{Node Outputs}
- Y (Y_constraint, single) - output

\section*{Type Constraints}
- \(\mathbf{T}\) - uint8, uint16, uint 32 , uint 64, int8, int16, int 32 , int64, float16, float32, float64, bool_, complex64, complex128
- Y_constraint - int 64

Parameters name - the name of the node.
class ONNXNormalizer (name, *, norm='MAX')
Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Normalize the input. There are three normalization modes, which have the corresponding formulas, defined using element-wise infix operators ' \(/\) ' and ' \(\wedge\) ' and tensor-wide functions 'max' and 'sum':

 Max: \(\mathrm{Y}=\mathrm{X} / \max (\mathrm{X})<\mathrm{br}>\mathrm{L} 1: \mathrm{Y}=\mathrm{X} / \operatorname{sum}(\mathrm{X})<\mathrm{br}>\mathrm{L} 2: \mathrm{Y}=\operatorname{sqrt}\left(\mathrm{X}^{\wedge} 2 / \operatorname{sum}\left(\mathrm{X}^{\wedge} 2\right)\right\}<b r>\mathrm{In}\) all modes, if the divisor is zero, \(\mathrm{Y}=\mathrm{X}\).

 For batches, that is, \([\mathrm{N}, \mathrm{C}]\) tensors, normalization is done along the C axis. In other words, each row of the batch is normalized independently.

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Data to be encoded, a tensor of shape [\(\mathrm{N}, \mathrm{C}\)] or [C]

\section*{Node Outputs}
- Y (Y_constraint, single) - Encoded output data

\section*{Type Constraints}
- T-float 32 , float 64, int 64, int 32
- Y_constraint - float 32

\section*{Parameters}
- name - the name of the node.
- norm (Optional [str], default='MAX') - One of 'MAX,' 'L1,' 'L2'
norm
One of 'MAX,' 'L1,' 'L2'

\section*{class ONNXNot (name, *)}

Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Returns the negation of the input tensor element-wise.

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Input tensor

\section*{Node Outputs}
- Y (T, single) - Output tensor

\section*{Type Constraints}
- T-bool_

Parameters name - the name of the node.
class ONNXOneHot (name, *, axis=-1)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Produces a one-hot tensor based on inputs. The locations represented by the index values in the 'indices' input tensor will have 'on_value' and the other locations will have 'off_value' in the output tensor, where 'on_value' and 'off_value' are specified as part of required input argument 'values', which is a two-element tensor of format [off_value, on_value]. The rank of the output tensor will be one greater than the rank of the input tensor. The additional dimension is for one-hot representation. The additional dimension will be inserted at the position specified by 'axis'. If 'axis' is not specified then then additional dimension will be inserted as the innermost dimension, i.e. axis=-1. The size of the additional dimension is specified by required scalar input 'depth'. The type of the output tensor is the same as the type of the 'values' input. Any entries in the 'indices' input tensor with values outside the range [-depth, depth-1] will result in one-hot representation with all 'off_value' values in the output tensor.
when axis \(=0\) : output \([\operatorname{input}[i, j, k], i, j, k]=1\) for all \(\mathrm{i}, \mathrm{j}, \mathrm{k}\) and 0 otherwise.
when axis \(=-1\) : output \([i, j, k\), input \([i, j, k]]=1\) for all \(i, j, k\) and 0 otherwise.

\section*{Node Inputs}
- indices (T1, single) - Input tensor containing indices. Any entries in the 'indices' input tensor with values outside the range [-depth, depth-1] will result in one-hot representation with all 'off_value' values in the output tensor.In case 'indices' is of non-integer type, the values will be casted to int64 before use.
- depth (T2, single) - Scalar specifying the number of classes in one-hot tensor. This is also the size of the one-hot dimension (specified by 'axis' attribute) added on in the output tensor. The values in the 'indices' input tensor are expected to be in the range [-depth, depth-1]. In case 'depth' is of non-integer type, it will be casted to int64 before use.
- values (T3, single) - Rank 1 tensor containing exactly two elements, in the format [off_value, on_value], where 'on_value' is the value used for filling locations specified in 'indices' input tensor, and 'off_value' is the value used for filling locations other than those specified in 'indices' input tensor.

\section*{Node Outputs}
- output (T3, single) - Tensor of rank one greater than input tensor 'indices', i.e. rank(output) \(=\operatorname{rank}(\) indices \()+1\). The data type for the elements of the output tensor is the same as the type of input 'values' is used.

\section*{Type Constraints}
- T1 - uint8, uint16, uint32, uint64, int8, int16, int 32, int64, float16, float 32 , float 64
- T2 - uint8, uint16, uint32, uint64, int 8 , int16, int 32, int64, float16, float 32 , float 64
- T3 - uint8, uint16, uint32, uint64, int8, int16, int 32, int64, float16, float 32 , float64, bool_, complex64, complex128

\section*{Parameters}
- name - the name of the node.
- axis (Optional [int], default=-1) - (Optional) Axis along which one-hot representation in added. Default: axis=-1. axis=-1 means that the additional dimension will be inserted as the innermost/last dimension in the output tensor. Negative value means counting dimensions from the back. Accepted range is \([-\mathrm{r}-1, \mathrm{r}]\) where \(\mathrm{r}=\operatorname{rank}\) (indices).
axis
(Optional) Axis along which one-hot representation in added. Default: axis=-1. axis=-1 means that the additional dimension will be inserted as the innermost/last dimension in the output tensor. Negative value means counting dimensions from the back. Accepted range is \([-r-1, r]\) where \(r=\operatorname{rank}\) (indices).
class ONNXOneHotEncoder (name, *, cats_int64s=None, cats_strings=None, zeros=1)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Replace each input element with an array of ones and zeros, where a single one is placed at the index of the category that was passed in. The total category count will determine the size of the extra dimension of the output array Y. \(<\) br> For example, if we pass a tensor with a single value of 4 , and a category count of 8 , the output will be a tensor with \([0,0,0,0,1,0,0,0] .<b r>\) This operator assumes every input feature is from the same set of categories.
 If the input is a tensor of float, int 32 , or double, the data will be cast to integers and the cats_int64s category list will be used for the lookups.

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Data to be encoded.

\section*{Node Outputs}
- Y (Y_constraint, single) - Encoded output data, having one more dimension than X.

\section*{Type Constraints}
- T-int 64 , int 32 , float 32 , float 64
- Y_constraint - float 32

\section*{Parameters}
- name - the name of the node.
- cats_int64s (Optional [List [int]], default=None) - List of categories, ints.
One and only one of the 'cats_*' attributes must be defined.
- cats_strings (Optional [List [str]], default=None) - List of categories, strings.
One and only one of the 'cats_*' attributes must be defined.
- zeros (Optional [int], default=1) - If true and category is not present, will return all zeros; if false and a category if not found, the operator will fail.
cats_int64s
List of categories, ints.
One and only one of the 'cats_*' attributes must be defined.
cats_strings
List of categories, strings.
One and only one of the 'cats_*' attributes must be defined.
zeros
If true and category is not present, will return all zeros; if false and a category if not found, the operator will fail.
class ONNXOr (name, *)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Returns the tensor resulted from performing the or logical operation elementwise on the input tensors \(A\) and \(B\) (with Numpy-style broadcasting support).

This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- A (T, single) - First input operand for the logical operator.
- B (T, single) - Second input operand for the logical operator.

\section*{Node Outputs}
- C (T1, single) - Result tensor.

\section*{Type Constraints}
- T-bool_
- T1-bool_

Parameters name - the name of the node.
class ONNXPRelu (name, *)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
PRelu takes input data (Tensor \(<\mathrm{T}>\)) and slope tensor as input, and produces one output data (Tensor \(<\mathrm{T}>\)) where the function \(f(x)=\) slope \(* x\) for \(x<0, f(x)=x\) for \(x>=0\)., is applied to the data tensor elementwise. This operator supports unidirectional broadcasting (tensor slope should be unidirectional broadcastable to input tensor X); for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- X (T, single) - Input tensor
- slope (T, single) - Slope tensor. The shape of slope can be smaller then first input \(X\); if so, its shape must be unidirectional broadcastable to X

\section*{Node Outputs}
- Y (T, single) - Output tensor (same size as X)

\section*{Type Constraints}
- T-float16, float 32 , float 64 , uint 32 , uint 64 , int 32 , int 64

Parameters name - the name of the node.
class ONNXPad (name, *, mode \(=\) 'constant')
Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Given a tensor containing the data to be padded (data), a tensor containing the number of start and end pad values for axis (pads), (optionally) a mode, and (optionally) constant_value, a padded tensor (output) is generated.
The three supported modes are (similar to corresponding modes supported by numpy.pad):
1) constant (default) - pads with a given constant value as specified by `constant_value (which defaults to 0)
2) reflect - pads with the reflection of the vector mirrored on the first and last values of the vector along each axis
3) edge - pads with the edge values of array

Example 1 (constant mode): Insert 0 pads to the beginning of the second dimension.
```

data = [
[1.0, 1.2], [2.3, 3.4], [4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'constant'
constant_value = 0.0
output = [
[ [0.0, 0.0, 1.0, 1.2], [0.0, 0.0, 2.3, 3.4], [0.0, 0.0, 4.5, 5.7],
],
]

```

Example 2 (reflect mode): data \(=\) [
[1.0, 1.2], [2.3, 3.4], [4.5, 5.7],
]
pads \(=[0,2,0,0]\)
mode \(=\) 'reflect'
output \(=[\)
 [[1.0, 1.2, 1.0, 1.2], [2.3, 3.4, 2.3, 3.4], [4.5, 5.7, 4.5, 5.7],
],
]

Example 3 (edge mode): data \(=[\)
[1.0, 1.2], [2.3, 3.4], [4.5, 5.7],
]
pads \(=[0,2,0,0]\)
mode \(=\) 'edge'
output \(=[\)
 [[1.0, 1.0, 1.0, 1.2], [2.3, 2.3, 2.3, 3.4], [4.5, 4.5, 4.5, 5.7],
],
]

\section*{Node Inputs}
- data (T , single) - Input tensor.
- pads (pads_constraint, single) - Tensor of integers indicating the number of padding elements to add or remove (if negative) at the beginning and end of each axis. For 2D input tensor, it is the number of pixels. pads should be a 1 D tensor of shape [\(2 *\) input_rank]. pads format should be: [\(\mathrm{x} 1 _\)begin, \(\mathrm{x} 2 _\)begin,..., \(\mathrm{x} 1 _\)end, \(\mathrm{x} 2 _\)end,...], where xi _begin is the number of pad values added at the beginning of axis \(i\) and xi_end, the number of pad values added at the end of axis \(i\).
- constant_value (T, optional) - (Optional) A scalar value to be used if the mode chosen is constant (by default it is 0).

\section*{Node Outputs}
- output (T, single) - Tensor after padding.

\section*{Type Constraints}
- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float 64
- pads_constraint - int 64

\section*{Parameters}
- name - the name of the node.
- mode (Optional [str], default='constant') - Supported modes: constant'(default), `reflect, edge
mode
Supported modes: constant`(default), `reflect, edge

\section*{class ONNXPow (name, *)}

Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Pow takes input data (Tensor \(<\mathrm{T}>\)) and exponent Tensor, and produces one output data (Tensor \(<\mathrm{T}>\)) where the function \(f(x)=x^{\wedge}\) exponent, is applied to the data tensor elementwise. This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - First operand, base of the exponent.
- Y (T1, single) - Second operand, power of the exponent.

\section*{Node Outputs}
- \(\mathbf{Z}\) (T, single) - Output tensor (same size as X)

\section*{Type Constraints}
- T-int 32 , int 64 , float16, float 32 , float 64
- T1 - uint8, uint16, uint32, uint64, int8, int16, int 32, int64, float16, float 32 , float 64

Parameters name - the name of the node.
class ONNXQLinearConv (name, *, auto_pad='NOTSET', dilations=None, group=1, kernel_shape \(=\) None, pads \(=\) None, , strides \(=\) None)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
The convolution operator consumes a quantized input tensor, its scale and zero point, a quantized filter, its scale and zero point, and output's scale and zero point, and computes the quantized output. Each scale and zero-point pair must have same shape. It means they must be either scalars (per tensor) or 1-D tensors (per output channel).

Each input or output and its related zero point must have same type. When bias is present it must be quantized using scale \(=\) input scale \(*\) weight scale and zero point as 0.

\section*{Node Inputs}
- \(\mathbf{x}\) (T1, single) - Input data tensor from previous layer; has size (\(\mathrm{N} \times \mathrm{C} \times \mathrm{H} \times \mathrm{W}\)), where N is the batch size, C is the number of channels, and H and W are the height and width. Note that this is for the 2D image. Otherwise the size is (\(\mathrm{N} \times \mathrm{C} \times \mathrm{D} 1 \times \mathrm{D} 2 \ldots \times \mathrm{Dn}\)). Optionally, if dimension denotation is in effect, the operation expects input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].
- x_scale (x_scale_constraint, single) - Scale tensor for input ' \(x\) '. It's a scalar, which means a per-tensor/layer quantization.
- x_zero_point (T1, single) - Zero point tensor for input 'x'. It's a scalar, which means a per-tensor/layer quantization.
- w (T2, single) - The weight tensor that will be used in the convolutions; has size (M x C/group \(\mathrm{x} \mathrm{kH} \times \mathrm{kW}\)), where C is the number of channels, and kH and kW are the height and width of the kernel, and \(M\) is the number of feature maps. For more than 2 dimensions, the kernel shape will be (\(\mathrm{M} \times \mathrm{C} /\) group x k 1 xk k x \(\ldots \mathrm{x} \mathrm{kn}\)), where (\(\mathrm{k} 1 \mathrm{xk} 2 \mathrm{x} \ldots \mathrm{kn}\)) is the dimension of the kernel. Optionally, if dimension denotation is in effect, the operation expects the weight tensor to arrive with the dimension denotation of [FILTER_OUT_CHANNEL, FILTER_IN_CHANNEL, FILTER_SPATIAL, FILTER_SPATIAL ...]. X.shape[1] == (W.shape[1] * group) \(==\mathrm{C}\) (assuming zero based indices for the shape array). Or in other words FILTER_IN_CHANNEL should be equal to DATA_CHANNEL.
- w_scale (w_scale_constraint, single) - Scale tensor for input 'w'. It could be a scalar or a 1-D tensor, which means a per-tensor/layer or per output channel quantization. If it's a 1-D tensor, its number of elements should be equal to the number of output channels (M).
- w_zero_point (T2, single) - Zero point tensor for input ' \(w\) '. It could be a scalar or a 1D tensor, which means a per-tensor/layer or per output channel quantization. If it's a 1-D tensor, its number of elements should be equal to the number of output channels (M).
- y_scale (y_scale_constraint, single) - Scale tensor for output ' \(y\) '. It's a scalar, which means a per-tensor/layer quantization.
- y_zero_point (T3, single) - Zero point tensor for output ' \(y\) '. It's a scalar, which means a per-tensor/layer quantization.
- B (T4, optional) - Optional 1D bias to be added to the convolution, has size of M. Bias must be quantized using scale \(=x _\)scale \(* w _\)scale and zero_point \(=0\)

\section*{Node Outputs}
- \(\mathbf{y}\) (T3, single) - Output data tensor that contains the result of the convolution. The output dimensions are functions of the kernel size, stride size, and pad lengths.

\section*{Type Constraints}
- T1 - int 8 , uint 8
- T2 - int 8, uint 8
- T3 - int 8, uint 8
- T4 - int 32
- x_scale_constraint - float 32
- w_scale_constraint - float 32
- y_scale_constraint - float 32

\section*{Parameters}
- name - the name of the node.
- auto_pad (Optional [str], default='NOTSET') - auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding.
- dilations (Optional [List [int]], default=None) - dilation value along each spatial axis of the filter. If not present, the dilation defaults to 1 along each spatial axis.
- group (Optional [int], default=1) - number of groups input channels and output channels are divided into. default is 1 .
- kernel_shape (Optional [List [int]], default=None) - The shape of the convolution kernel. If not present, should be inferred from input ' \(w\) '.
- pads (Optional [List [int]], default=None) - Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0. The value represent the number of pixels added to the beginning and end part of the corresponding axis.`pads` format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number ofpixels added at the beginning of axis \(i\) and xi_end, the number of pixels added at the end of axis \(i\).This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaultsto 0 along start and end of each spatial axis.
- strides (Optional [List [int]], default=None) - Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.

\section*{auto_pad}
auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output spatial size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding.

\section*{dilations}
dilation value along each spatial axis of the filter. If not present, the dilation defaults to 1 along each spatial axis.

\section*{group}
number of groups input channels and output channels are divided into. default is 1.

\section*{kernel_shape}

The shape of the convolution kernel. If not present, should be inferred from input 'w'.

\section*{pads}

Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0 .The value represent the number of pixels added to the beginning and end part of the corresponding axis.'pads` format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number ofpixels added at the beginning of axis \(i\) and xi_end, the number of pixels added at the end of axis \(i\).This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaultsto 0 along start and end of each spatial axis.

\section*{strides}

Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.

\section*{class ONNXQLinearMatMul (name, *)}

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/ numpy.matmul.html. It consumes two quantized input tensors, their scales and zero points, scale and zero point of output, and computes the quantized output. The quantization formula is \(\mathrm{y}=\) saturate \(((\mathrm{x} / \mathrm{y}\) _scale \()+\) y_zero_point). For (x / y_scale), it is rounding to nearest ties to even. Refer to https://en.wikipedia.org/wiki/ Rounding for details. Scale and zero point must have same shape. They must be either scalar (per tensor) or 1-D tensor (per row for ' \(a\) ' and per column for ' \(b\) '). If scale and zero point are 1-D tensor, the number of elements of scale and zero point tensor of input ' \(a\) ' and output ' \(y\) ' should be equal to the number of rows of input ' \(a\) ', and the number of elements of scale and zero point tensor of input ' \(b\) ' should be equal to the number of columns of input ' \(b\) '. Production must never overflow, and accumulation may overflow if and only if in 32 bits.

\section*{Node Inputs}
- a (T1, single) - N-dimensional quantized matrix a
- a_scale (a_scale_constraint, single) - scale of quantized input a
- a_zero_point (T1, single) - zero point of quantized input a
- \(\mathbf{b}\) (T2, single) - N-dimensional quantized matrix b
- b_scale (b_scale_constraint, single) - scale of quantized input b
- b_zero_point (T2, single) - zero point of quantized input b
- y_scale (y_scale_constraint, single) - scale of quantized output y
- y_zero_point (T3, single) - zero point of quantized output y

\section*{Node Outputs}
- \(\mathbf{y}\) (T3, single) - Quantized matrix multiply results from \(\mathrm{a} * \mathrm{~b}\)

\section*{Type Constraints}
- T1 - int 8 , uint 8
- T2 - int 8 , uint 8
- T3 - int 8 , uint 8
- a_scale_constraint - float 32
- b_scale_constraint - float 32
- y_scale_constraint - float 32

Parameters name - the name of the node.
class ONNXQuantizeLinear (name, *)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
The linear per-tensor/layer quantization operator. It consumes a high precision tensor, a scale, a zero point to compute the low precision / quantized tensor. The quantization formula is \(\mathrm{y}=\) saturate \(((\mathrm{x} / \mathrm{y}\) _scale \()+\) y_zero_point). For saturation, it saturates to [0, 255] if it's uint8, or [-128, 127] if it's int8. For (x / y_scale), it's rounding to nearest ties to even. Refer to https://en.wikipedia.org/wiki/Rounding for details. 'y_zero_point' and ' \(y\) ' must have same type.

\section*{Node Inputs}
- \(\mathbf{x}\) (T1, single) - N-D full precision Input tensor to be quantized.
- y_scale (\(y\) _scale_constraint, single) - Scale for doing quantization to get ' \(y\) '. It's a scalar, which means a per-tensor/layer quantization.
- y_zero_point (T2, optional) - Zero point for doing quantization to get ' y '. It's a scalar, which means a per-tensor/layer quantization. Default value is uint 8 typed 0 if it's not specified.

\section*{Node Outputs}
- \(\mathbf{y}\) (T2, single) - N-D quantized output tensor. It has same shape as input ' \(x\) '.

\section*{Type Constraints}
- T1 - float 32 , int 32
- T2 - int 8 , uint 8
- y_scale_constraint - float 32

Parameters name - the name of the node.
class ONNXRNN (name, *, activation_alpha=None, activation_beta=None, activations=['Tanh', 'Tanh'], clip \(=\) None, direction='forward', hidden_size=None)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Computes an one-layer simple RNN. This operator is usually supported via some custom implementation such as CuDNN.

Notations:
\(X\) - input tensor
\(i\) - input gate
\(t\) - time step (\(\mathrm{t}-1\) means previous time step)
Wi-W parameter weight matrix for input gate
\(R i-\mathrm{R}\) recurrence weight matrix for input gate
\(W b i-\) W parameter bias vector for input gate
\(R b i\) - R parameter bias vector for input gate
\(W B i\) - W parameter weight matrix for backward input gate
\(R B i-\mathrm{R}\) recurrence weight matrix for backward input gate
WBbi - WR bias vectors for backward input gate
\(R B b i\) - RR bias vectors for backward input gate
\(H\) - Hidden state
num_directions - 2 if direction == bidirectional else 1
Activation functions:
\(\operatorname{Relu}(\mathrm{x})-\max (0, \mathrm{x})\)
\(\operatorname{Tanh}(x)-\left(1-e^{\wedge}\{-2 x\}\right) /\left(1+e^{\wedge}\{-2 x\}\right)\)
\(\operatorname{Sigmoid}(x)-1 /\left(1+e^{\wedge}\{-x\}\right)\)
(NOTE: Below are optional)
Affine(x) - alpha*x + beta
LeakyRelu(x) - x if \(\mathrm{x}>=0\) else alpha * x
ThresholdedRelu(x) - x if \(\mathrm{x}>=\) alpha else 0
ScaledTanh(x) - alpha*Tanh(beta*x)
\(\operatorname{HardSigmoid}(x)-\min \left(\max \left(\right.\right.\) alpha \(\left.\left.^{*} \mathrm{x}+\operatorname{beta}, 0\right), 1\right)\)
\(\operatorname{Elu}(x)-x\) if \(x>=0\) else alpha* \(\left(e^{\wedge} x-1\right)\)
\(\operatorname{Softsign}(x)-x /(1+|x|)\)
Softplus \((x)-\log \left(1+e^{\wedge} x\right)\)
Equations (Default: \(f=\) Tanh):
- \(\mathrm{Ht}=\mathrm{f}\left(\mathrm{Xt}^{*}\left(\mathrm{Wi}^{\wedge} \mathrm{T}\right)+\mathrm{Ht}-1^{*}\left(\mathrm{Ri}^{\wedge} \mathrm{T}\right)+\mathrm{Wbi}+\mathrm{Rbi}\right)\)

This operator has optional inputs/outputs. See [the doc](IR.md) for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.

\section*{Node Inputs}
- X (T, single) - The input sequences packed (and potentially padded) into one 3-D tensor with the shape of [seq_length, batch_size, input_size].
- W (T, single) - The weight tensor for input gate. Concatenation of Wi and WBi (if bidirectional). The tensor has shape [num_directions, hidden_size, input_size].
- \(\mathbf{R}\) (T, single) - The recurrence weight tensor. Concatenation of \(R i\) and \(R B i\) (if bidirectional). The tensor has shape [num_directions, hidden_size, hidden_size].
- B (T, optional) - The bias tensor for input gate. Concatenation of [Wbi, Rbi] and [WBbi, RBbi] (if bidirectional). The tensor has shape [num_directions, 2 *hidden_size]. Optional: If not specified - assumed to be 0 .
- sequence_lens (T1, optional) - Optional tensor specifying lengths of the sequences in a batch. If not specified - assumed all sequences in the batch to have length seq_length. It has shape [batch_size].
- initial_h (T, optional) - Optional initial value of the hidden. If not specified - assumed to be 0 . It has shape [num_directions, batch_size, hidden_size].

\section*{Node Outputs}
- Y (T, optional) - A tensor that concats all the intermediate output values of the hidden. It has shape [seq_length, num_directions, batch_size, hidden_size].
- Y_h (T, optional) - The last output value of the hidden. It has shape [num_directions, batch_size, hidden_size].

\section*{Type Constraints}
- T-float16, float 32 , float 64
- T1 - int 32

\section*{Parameters}
- name - the name of the node.
- activation_alpha (Optional [List [float]], default=None) - Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (\(f, \mathrm{~g}, \mathrm{~h}\)) in LSTM. Default values are the same as of corresponding ONNX operators.For example with LeakyRelu, the default alpha is 0.01 .
- activation_beta (Optional [List [float]], default=None) - Optional scaling values used by some activation functions. The values are consumed in the order of activation
functions, for example (f, g, h) in LSTM. Default values are the same as of corresponding ONNX operators.
- activations (Optional [List [str]], default=['Tanh', 'Tanh']) - One (or two if bidirectional) activation function for input gate. The activation function must be one of the activation functions specified above. Optional: Default Tanh if not specified.
- clip (Optional [float], default=None) - Cell clip threshold. Clipping bounds the elements of a tensor in the range of [-threshold, +threshold] and is applied to the input of activations. No clip if not specified.
- direction (Optional [str], default='forward') - Specify if the RNN is forward, reverse, or bidirectional. Must be one of forward (default), reverse, or bidirectional.
- hidden_size (Optional [int], default=None) - Number of neurons in the hidden layer

\section*{activation_alpha}

Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (\(f, g\), \(h\)) in LSTM. Default values are the same as of corresponding ONNX operators.For example with LeakyRelu, the default alpha is 0.01 .

\section*{activation_beta}

Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (\(\mathrm{f}, \mathrm{g}, \mathrm{h}\)) in LSTM. Default values are the same as of corresponding ONNX operators.
activations
One (or two if bidirectional) activation function for input gate. The activation function must be one of the activation functions specified above. Optional: Default Tanh if not specified.
clip
Cell clip threshold. Clipping bounds the elements of a tensor in the range of [-threshold, +threshold] and is applied to the input of activations. No clip if not specified.

\section*{direction}

Specify if the RNN is forward, reverse, or bidirectional. Must be one of forward (default), reverse, or bidirectional.

\section*{hidden_size}

Number of neurons in the hidden layer
```

class ONNXRandomNormal (name, *, dtype =1, mean=0.0, scale =1.0, seed=None, shape)

```

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Generate a tensor with random values drawn from a normal distribution. The shape of the tensor is specified by the shape argument and the parameter of the normal distribution specified by mean and scale.
The data type is specified by the 'dtype' argument. The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the TensorProto message.

\section*{Node Inputs}

\section*{Node Outputs}
- output (T, single) - Output tensor of random values drawn from normal distribution

\section*{Type Constraints}
- T-float16, float 32 , float 64

\section*{Parameters}
- name - the name of the node.
- dtype (Opt ional [int], default=1) - The data type for the elements of the output tensor. Default is TensorProto::FLOAT.
- mean (Optional [float], default=0.0) - The mean of the normal distribution.
- scale (Optional [float], default=1.0) - The standard deviation of the normal distribution.
- seed (Optional [float], default=None) - (Optional) Seed to the random generator, if not specified we will auto generate one.
- shape (List [int]) - The shape of the output tensor.

\section*{dtype}

The data type for the elements of the output tensor. Default is TensorProto::FLOAT.

\section*{mean}

The mean of the normal distribution.

\section*{scale}

The standard deviation of the normal distribution.
seed
(Optional) Seed to the random generator, if not specified we will auto generate one.

\section*{shape}

The shape of the output tensor.
class ONNXRandomNormalLike (name, *, dtype \(=\) None, mean \(=0.0\), scale \(=1.0\), seed \(=\) None)
Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Generate a tensor with random values drawn from a normal distribution. The shape of the output tensor is copied from the shape of the input tensor, and the parameters of the normal distribution are specified by mean and scale.

The data type is specified by the 'dtype' argument, or copied from the input tensor if not provided. The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the TensorProto message, and be valid as an output type.

\section*{Node Inputs}
- input (T1, single) - Input tensor to copy shape and optionally type information from.

\section*{Node Outputs}
- output (T2, single) - Output tensor of random values drawn from normal distribution

\section*{Type Constraints}
- T1 - uint8, uint16, uint 32, uint 64, int 8 , int16, int 32 , int 64, float16, float 32 , float64, bool_, complex64, complex128
- T2-float16, float 32, float 64

\section*{Parameters}
- name - the name of the node.
- dtype (Optional [int], default=None) - (Optional) The data type for the elements of the output tensor, if not specified, we will use the data type of the input tensor.
- mean (Optional [float], default=0.0) - The mean of the normal distribution.
- scale (Optional [float], default=1.0) - The standard deviation of the normal distribution.
- seed (Optional [float], default=None) - (Optional) Seed to the random generator, if not specified we will auto generate one.
dtype
(Optional) The data type for the elements of the output tensor, if not specified, we will use the data type of the input tensor.
mean
The mean of the normal distribution.
scale
The standard deviation of the normal distribution.
seed
(Optional) Seed to the random generator, if not specified we will auto generate one.
class ONNXRandomUniform (name, \({ }^{*}\), dtype \(=1\), high \(=1.0\), low \(=0.0\), seed \(=\) None, shape)
Bases: dacemI. onnx. nodes.onnx_op. ONNXOp
Generate a tensor with random values drawn from a uniform distribution. The shape of the tensor is specified by the shape argument and the range by low and high.

The data type is specified by the 'dtype' argument. The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the TensorProto message.

\section*{Node Inputs}

\section*{Node Outputs}
- output (T, single) - Output tensor of random values drawn from uniform distribution

\section*{Type Constraints}
- T-float16, float32, float 64

\section*{Parameters}
- name - the name of the node.
- dtype (Optional [int], default=1) - The data type for the elements of the output tensor. If not specified, default is TensorProto::FLOAT.
- high (Optional [float], default=1.0) - Upper boundary of the output values.
- low (Optional [float], default=0.0) - Lower boundary of the output values.
- seed (Optional [float], default=None) - (Optional) Seed to the random generator, if not specified we will auto generate one.
- shape (List [int]) - The shape of the output tensor.

\section*{dtype}

The data type for the elements of the output tensor. If not specified, default is TensorProto::FLOAT.

\section*{high}

Upper boundary of the output values.
low
Lower boundary of the output values.

\section*{seed}
(Optional) Seed to the random generator, if not specified we will auto generate one.

\section*{shape}

The shape of the output tensor.
```

class ONNXRandomUniformLike (name, *, dtype=None, high=1.0, low=0.0, seed=None)

```

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Generate a tensor with random values drawn from a uniform distribution. The shape of the output tensor is copied from the shape of the input tensor, and the parameters of the uniform distribution are specified by low and high.

The data type is specified by the 'dtype' argument, or copied from the input tensor if not provided. The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the TensorProto message and be valid as an output type.

\section*{Node Inputs}
- input (T 1, single) - Input tensor to copy shape and optionally type information from.

\section*{Node Outputs}
- output (T2, single) - Output tensor of random values drawn from uniform distribution

\section*{Type Constraints}
- T1 - uint 8, uint16, uint32, uint64, int8, int16, int 32, int64, float16, float 32 , float64, bool_, complex64, complex128
- T2 - float16, float32, float 64

\section*{Parameters}
- name - the name of the node.
- dtype (Optional [int], default=None) - (Optional) The data type for the elements of the output tensor, if not specified, we will use the data type of the input tensor.
- high (Optional [float], default=1.0) - Upper boundary of the output values.
- low (Optional [float], default=0.0) - Lower boundary of the output values.
- seed (Optional [float], default=None) - (Optional) Seed to the random generator, if not specified we will auto generate one.

\section*{dtype}
(Optional) The data type for the elements of the output tensor, if not specified, we will use the data type of the input tensor.

\section*{high}

Upper boundary of the output values.
low
Lower boundary of the output values.
seed
(Optional) Seed to the random generator, if not specified we will auto generate one.

\section*{class ONNXRange (name, *)}

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Generate a tensor containing a sequence of numbers that begin at start and extends by increments of delta up to limit (exclusive).
The number of elements in the output of range is computed as below-
\[
\text { number_of_elements }=\max (\text { ceil }((\text { limit }- \text { start }) / \text { delta }), 0)
\]

The pseudocode determining the contents of the output is shown below-
for(int \(\left.i=0 ; i<n u m b e r _o f _e l e m e n t s ;++i\right)\)
```

{
` output[i] = start + (i * delta);
}

```

Example 1 Inputs: start \(=3\), limit \(=9\), delta \(=3\) Output: \([3,6]\)
Example 2 Inputs: start \(=10\), limit \(=4\), delta \(=-2\) Output: \([10,8,6]\)

\section*{Node Inputs}
- start (T, single) - Scalar. First entry for the range of output values.
- limit (T, single) - Scalar. Exclusive upper limit for the range of output values.
- delta (T, single) - Scalar. Value to step by.

\section*{Node Outputs}
- output (T, single) - A 1-D tensor with same type as the inputs containing generated range of values.

\section*{Type Constraints}
- T-float 32, float 64, int16, int 32, int 64

Parameters name - the name of the node.
class ONNXReciprocal (name, *)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Reciprocal takes one input data (Tensor \(<\mathrm{T}>\)) and produces one output data (Tensor \(<\mathrm{T}>\)) where the reciprocal is, \(y=1 / x\), is applied to the tensor elementwise.

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Input tensor

\section*{Node Outputs}
- Y (T, single) - Output tensor

\section*{Type Constraints}
- T-float16, float 32 , float 64

Parameters name - the name of the node.
class ONNXReduceL1 (name, *, axes=None, keepdims=1)
Bases: dacemI.onnx.nodes.onnx_op. ONNXOp
Computes the L1 norm of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1 . If keepdims equal 0 , then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.

\section*{Node Inputs}
- data (T, single) - An input tensor.

\section*{Node Outputs}
- reduced (T, single) - Reduced output tensor.

\section*{Type Constraints}
- T-uint 32, uint64, int 32, int64, float16, float32, float64

\section*{Parameters}
- name - the name of the node.
- axes (Optional [List [int]], default=None) - A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is \([-r, r-1]\) where \(r=\operatorname{rank}(\) data \()\).
- keepdims (Optional [int], default=1) - Keep the reduced dimension or not, default 1 mean keep reduced dimension.
axes
A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is [-r, r-1] where \(r=\operatorname{rank}(\) data \()\).

\section*{keepdims}

Keep the reduced dimension or not, default 1 mean keep reduced dimension.
class ONNXReduceL2 (name, *, axes \(=\) None, keepdims \(=1\))
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Computes the L2 norm of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1 . If keepdims equal 0 , then the resulted tensor have the reduced dimension pruned.

The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.

\section*{Node Inputs}
- data (\(T\), single) - An input tensor.

\section*{Node Outputs}
- reduced (T , single) - Reduced output tensor.

\section*{Type Constraints}
- T-uint 32, uint 64, int 32 , int 64, float16, float 32 , float 64

\section*{Parameters}
- name - the name of the node.
- axes (Optional [List [int]], default=None) - A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is [-r, r-1] where \(r=\operatorname{rank}\) (data).
- keepdims (Optional [int], default=1) - Keep the reduced dimension or not, default 1 mean keep reduced dimension.

\section*{axes}

A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is [-r, r-1] where \(r=\operatorname{rank}(\) data \()\).
keepdims
Keep the reduced dimension or not, default 1 mean keep reduced dimension.
class ONNXReduceLogSum (name, *, axes=None, keepdims=1)
Bases: dacemI.onnx.nodes.onnx_op. ONNXOp

Computes the log sum of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1 . If keepdims equal 0 , then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.

\section*{Node Inputs}
- data (T, single) - An input tensor.

\section*{Node Outputs}
- reduced (T , single) - Reduced output tensor.

\section*{Type Constraints}
- T-uint 32 , uint 64 , int 32 , int 64 , float16, float 32 , float 64

\section*{Parameters}
- name - the name of the node.
- axes (Optional [List [int]], default=None) - A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is [-r, r-1] where \(r=\operatorname{rank}(\) data \()\).
- keepdims (Optional [int], default=1) - Keep the reduced dimension or not, default 1 mean keep reduced dimension.

\section*{axes}

A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is \([-r, r-1]\) where \(r=\operatorname{rank}(\) data \()\).

\section*{keepdims}

Keep the reduced dimension or not, default 1 mean keep reduced dimension.
```

class ONNXReduceLogSumExp (name, *, axes=None, keepdims=1)

```

Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Computes the log sum exponent of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1 . If keepdims equal 0 , then the resulted tensor have the reduced dimension pruned.

The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.

\section*{Node Inputs}
- data (T, single) - An input tensor.

\section*{Node Outputs}
- reduced (T , single) - Reduced output tensor.

\section*{Type Constraints}
- T-uint 32, uint 64, int 32, int64, float16, float 32 , float 64

\section*{Parameters}
- name - the name of the node.
- axes (Optional [List [int]], default=None) - A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is \([-r, r-1]\) where \(r=\operatorname{rank}(\) data \()\).
- keepdims (Optional [int], default=1) - Keep the reduced dimension or not, default 1 mean keep reduced dimension.

\section*{axes}

A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is \([-r, r-1]\) where \(r=\operatorname{rank}(\) data \()\).

\section*{keepdims}

Keep the reduced dimension or not, default 1 mean keep reduced dimension.
class ONNXReduceMax (name, *, axes=None, keepdims \(=1\))
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Computes the max of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1 . If keepdims equal 0 , then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.

\section*{Node Inputs}
- data (T, single) - An input tensor.

\section*{Node Outputs}
- reduced (T , single) - Reduced output tensor.

\section*{Type Constraints}
- T-uint 32 , uint 64 , int 32 , int 64 , float16, float 32 , float 64 , uint 8 , int 8

\section*{Parameters}
- name - the name of the node.
- axes (Optional [List [int]], default=None) - A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is [-r, r-1] where \(r=\operatorname{rank}\) (data).
- keepdims (Optional [int], default=1) - Keep the reduced dimension or not, default 1 mean keep reduced dimension.
axes
A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is [-r, r-1] where \(r=\operatorname{rank}(\) data \()\).

\section*{keepdims}

Keep the reduced dimension or not, default 1 mean keep reduced dimension.
class ONNXReduceMean (name, *, axes \(=\) None, keepdims \(=1\))
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Computes the mean of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1 . If keepdims equal 0 , then the resulted tensor have the reduced dimension pruned.

The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.

\section*{Node Inputs}
- data (T, single) - An input tensor.

\section*{Node Outputs}
- reduced (T, single) - Reduced output tensor.

\section*{Type Constraints}
- T-uint 32, uint 64, int 32, int 64, float16, float 32, float 64

\section*{Parameters}
- name - the name of the node.
- axes (Optional [List [int]], default=None) - A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is [-r, r-1] where \(r=\operatorname{rank}(\) data \()\).
- keepdims (Optional [int], default=1) - Keep the reduced dimension or not, default 1 mean keep reduced dimension.

\section*{axes}

A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is [-r, r-1] where \(r=\operatorname{rank}(\) data \()\).

\section*{keepdims}

Keep the reduced dimension or not, default 1 mean keep reduced dimension.
```

class ONNXReduceMin (name, *, axes=None, keepdims=1)

```

Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Computes the min of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1 . If keepdims equal 0 , then the resulted tensor have the reduced dimension pruned.

The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.

\section*{Node Inputs}
- data (T, single) - An input tensor.

\section*{Node Outputs}
- reduced (T , single) - Reduced output tensor.

\section*{Type Constraints}
- T-uint 32, uint 64, int 32 , int 64, float16, float 32 , float 64, uint 8 , int 8

\section*{Parameters}
- name - the name of the node.
- axes (Optional [List [int]], default=None) - A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is [-r, r-1] where \(r=\operatorname{rank}\) (data).
- keepdims (Optional [int], default=1) - Keep the reduced dimension or not, default 1 mean keep reduced dimension.
axes
A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is \([-r, r-1]\) where \(r=\operatorname{rank}(\) data \()\).

\section*{keepdims}

Keep the reduced dimension or not, default 1 mean keep reduced dimension.
class ONNXReduceProd(name, *, axes=None, keepdims=1)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Computes the product of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1 . If keepdims equal 0 , then the resulted tensor have the reduced dimension pruned.

The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.

\section*{Node Inputs}
- data (T, single) - An input tensor.

\section*{Node Outputs}
- reduced (T , single) - Reduced output tensor.

\section*{Type Constraints}
- T-uint 32, uint 64, int 32, int 64, float16, float 32, float 64

\section*{Parameters}
- name - the name of the node.
- axes (Optional [List [int]], default=None) - A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is \([-r, r-1]\) where \(r=\operatorname{rank}(\) data \()\).
- keepdims (Optional [int], default=1) - Keep the reduced dimension or not, default 1 mean keep reduced dimension.
axes
A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is [-r, r-1] where \(r=\operatorname{rank}(\) data \()\).

\section*{keepdims}

Keep the reduced dimension or not, default 1 mean keep reduced dimension.
```

class ONNXReduceSum (name, *, axes=None, keepdims=1)

```

Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Computes the sum of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1 . If keepdims equal 0 , then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.

\section*{Node Inputs}
- data (T, single) - An input tensor.

\section*{Node Outputs}
- reduced (T , single) - Reduced output tensor.

\section*{Type Constraints}
- T-uint 32, uint 64, int 32 , int 64 , float16, float 32 , float 64

\section*{Parameters}
- name - the name of the node.
- axes (Optional [List [int]], default=None) - A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is \([-r, r-1]\) where \(r=\operatorname{rank}(\) data \()\).
- keepdims (Optional [int], default=1) - Keep the reduced dimension or not, default 1 mean keep reduced dimension.

\section*{axes}

A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is [-r, r-1] where \(r=\operatorname{rank}(\) data \()\).

\section*{keepdims}

Keep the reduced dimension or not, default 1 mean keep reduced dimension.
```

class ONNXReduceSumSquare (name, *, axes=None, keepdims=1)

```

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Computes the sum square of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0 , then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.

\section*{Node Inputs}
- data (T, single) - An input tensor.

\section*{Node Outputs}
- reduced (T , single) - Reduced output tensor.

\section*{Type Constraints}
- T-uint 32 , uint 64, int 32 , int 64, float16, float 32 , float 64

\section*{Parameters}
- name - the name of the node.
- axes (Optional [List [int]], default=None) - A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is [-r, r-1] where \(r=\operatorname{rank}(\) data \()\).
- keepdims (Optional [int], default=1) - Keep the reduced dimension or not, default 1 mean keep reduced dimension.
axes
A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor. Accepted range is [-r, r-1] where \(r=\operatorname{rank}\) (data).

\section*{keepdims}

Keep the reduced dimension or not, default 1 mean keep reduced dimension.

\section*{class ONNXRelu (name, *)}

Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Relu takes one input data (Tensor \(<\mathrm{T}>\)) and produces one output data (Tensor \(<\mathrm{T}>\)) where the rectified linear function, \(\mathrm{y}=\max (0, \mathrm{x})\), is applied to the tensor elementwise.

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Input tensor

\section*{Node Outputs}
- Y (T, single) - Output tensor

\section*{Type Constraints}
- T-float16, float 32 , float 64

Parameters name - the name of the node.
class ONNXReshape (name, *)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Reshape the input tensor similar to numpy.reshape. First input is the data tensor, second input is a shape tensor which specifies the output shape. It outputs the reshaped tensor. At most one dimension of the new shape can be -1 . In this case, the value is inferred from the size of the tensor and the remaining dimensions. A dimension could also be 0 , in which case the actual dimension value is unchanged (i.e. taken from the input tensor).

\section*{Node Inputs}
- data (T, single) - An input tensor.
- shape (shape_constraint, single) - Specified shape for output.

\section*{Node Outputs}
- reshaped (T, single) - Reshaped data.

\section*{Type Constraints}
- T - uint8, uint16, uint 32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128
- shape_constraint - int 64

Parameters name - the name of the node.
class ONNXResize (name, *, coordinate_transformation_mode='half_pixel', cubic_coeff_a=0.75, exclude_outside \(=0, \quad\) extrapolation_value \(=0.0, \quad\) mode='nearest', nearest_mode='round_prefer_floor')
Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Resize the input tensor. In general, it calculates every value in the output tensor as a weighted average of neighborhood (a.k.a. sampling locations) in the input tensor. Each dimension value of the output tensor is:
output_dimension \(=\) floor(input_dimension * (roi_end - roi_start) \(*\) scale) if input "sizes" is not specified.

\section*{Node Inputs}
- \(\mathbf{X}\) (T1, single) - N-D tensor
- roi (T2, single) - 1-D tensor given as [start1, .., startN, end1, .., endN], where \(N\) is the rank of X . The RoIs' coordinates are normalized in the coordinate system of the input image. It only takes effect when coordinate_transformation_mode is "tf_crop_and_resize"
- scales (scales_constraint, single) - The scale array along each dimension. It takes value greater than 0 . If it's less than 1 , it's sampling down, otherwise, it's upsampling. The number of elements of 'scales' should be the same as the rank of input ' X '. Only one of 'scales' and 'sizes' can be specified. If 'size' is needed, the user can use an empty string as the name of 'scales' in this operator's input list.
- sizes (sizes_constraint, optional) - The size of the output tensor. The number of elements of 'sizes' should be the same as the rank of input ' X '. Only one of 'scales' and 'sizes' can be specified.

\section*{Node Outputs}
- Y (T1, single) - N-D tensor after resizing

\section*{Type Constraints}
- T1 - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32, float64, bool_, complex64, complex128
- \(\mathbf{T} 2\)-float16, float 32 , float 64
- scales_constraint - float 32
- sizes_constraint - int 64

\section*{Parameters}
- name - the name of the node.
- coordinate_transformation_mode -

This attribute describes how to transform the coordinate in the resized tensor to the coordinate in the original tensor.

The coordinate of each dimension is transformed individually. Let's describe a case using axis x as an example. Denote x _resized as the coordinate of axis x in the resized tensor, x _original as the coordinate of axis x in the original tensor, length_original as the length of the original tensor in axis \(x\), length_resized as the length of the resized tensor in axis x , roi_x \(=\) (start_x, end_x) of the axis x in input "roi", scale \(=\) length_resized / length_original,

if coordinate_transformation_mode is "half_pixel",
 x_original \(=\left(x _r e s i z e d ~+~ 0.5\right) ~ / ~ s c a l e ~-~ 0.5, ~<b r />~\)
if coordinate_transformation_mode is "pytorch_half_pixel",
 x_original = length_resized > 1 ? (x_resized \(+0.5) /\) scale \(-0.5: 0,<b r />\)
if coordinate_transformation_mode is "align_corners",
 x_original = x_resized * (length_original - 1) / (length_resized - 1),

if coordinate_transformation_mode is "asymmetric",
 x_original = x_resized / scale,

if coordinate_transformation_mode is "tf_half_pixel_for_nn",
 x_original = (x_resized +0.5) / scale,

if coordinate_transformation_mode is "tf_crop_and_resize",
 x_original = length_resized > 1 ? start_x * (length_original - 1) + x_resized * (end_x - start_x) * (length_original - 1) / (length_resized - 1) : 0.5 * (start_x + end_x) * (length_original - 1). :type coordinate_transformation_mode: Optional [str], default='half_pixel' :param cubic_coeff_a: The coefficient 'a' used in cubic interpolation. Two common choice are -0.5 (in some cases of TensorFlow) and -0.75 (in PyTorch). Check out Equation (4) in https: //ieeexplore.ieee.org/document/1163711 for the details. This attribute is valid only if "mode" is "cubic". :type cubic_coeff_a: Optional [float], default=-0.75 :param exclude_outside: If set to 1 , the weight of sampling locations outside the tensor will be set to 0 and the weight will be renormalized so that their sum is 1.0 . The default value is 0 . :type exclude_outside: Optional [int], default=0 :param extrapolation_value: When coordinate_transformation_mode is "tf_crop_and_resize" and x_original is outside the range [0, length_original 1], this value is used as the corresponding output value. Default is 0.0 f . :type extrapolation_value: Optional [float], default=0.0 :param mode: Three interpolation modes: nearest (default), linear and cubic. The "linear" mode includes linear interpolation for 1D tensor and N-linear interpolation for N-D tensor (for example, bilinear interpolation for 2D tensor). The "cubic" mode includes cubic interpolation for 1 D tensor and N cubic interpolation for N-D tensor (for example, bicubic interpolation for 2D tensor). :type mode: Opt ional [str], default='nearest' :param nearest_mode: Four modes: round_prefer_floor (default, as known as round half down), round_prefer_ceil (as known as round half up), floor, ceil. Only used by nearest interpolation. It indicates how to get "nearest" pixel in input tensor from x_original, so this attribute is valid only if "mode" is "nearest". :type nearest_mode: Optional [str], default='round_prefer_floor'
coordinate_transformation_mode
This attribute describes how to transform the coordinate in the resized tensor to the coordinate in the original tensor.

The coordinate of each dimension is transformed individually. Let's describe a case using axis x as an example. Denote \(x_{-}\)resized as the coordinate of axis x in the resized tensor, \(\mathrm{x}_{-}\)original as the coordinate of axis x in the original tensor, length_original as the length of the original tensor in axis x , length_resized as the length of the resized tensor in axis x , roi_ \(\mathrm{x}=\) (start_x, end_x) of the axis x in input "roi", scale \(=\) length_resized / length_original,

if coordinate_transformation_mode is "half_pixel",
 x_original =(x_resized + 0.5) / scale - 0.5,

if coordinate_transformation_mode is "pytorch_half_pixel",
 x_original = length_resized > 1 ? (x_resized +0.5) / scale - \(0.5: 0,<b r />\)
if coordinate_transformation_mode is "align_corners",
 x_original = x_resized * (length_original 1) / (length_resized - 1),

if coordinate_transformation_mode is "asymmetric",
 x_original = x_resized / scale,

if coordinate_transformation_mode is "tf_half_pixel_for_nn",
 x_original = (x_resized + 0.5) / scale,

if coordinate_transformation_mode is "tf_crop_and_resize",
 x_original = length_resized > 1 ? start_x * (length_original - 1) + x_resized * (end_x - start_x) * (length_original - 1) / (length_resized -1) : 0.5 * (start_x + end_x) * (length_original - 1).
cubic_coeff_a
The coefficient ' \(a\) ' used in cubic interpolation. Two common choice are -0.5 (in some cases of TensorFlow) and - 0.75 (in PyTorch). Check out Equation (4) in https://ieeexplore.ieee.org/document/1163711 for the details. This attribute is valid only if "mode" is "cubic".
exclude_outside
If set to 1 , the weight of sampling locations outside the tensor will be set to 0 and the weight will be renormalized so that their sum is 1.0 . The default value is 0 .

\section*{extrapolation_value}

When coordinate_transformation_mode is "tf_crop_and_resize" and x_original is outside the range [0, length_original - 1], this value is used as the corresponding output value. Default is 0.0 .

\section*{mode}

Three interpolation modes: nearest (default), linear and cubic. The "linear" mode includes linear interpolation for 1D tensor and N -linear interpolation for \(\mathrm{N}-\mathrm{D}\) tensor (for example, bilinear interpolation for 2D tensor). The "cubic" mode includes cubic interpolation for 1D tensor and N-cubic interpolation for N-D tensor (for example, bicubic interpolation for 2D tensor).
nearest_mode
Four modes: round_prefer_floor (default, as known as round half down), round_prefer_ceil (as known as round half up), floor, ceil. Only used by nearest interpolation. It indicates how to get "nearest" pixel in input tensor from x_original, so this attribute is valid only if "mode" is "nearest".
class ONNXReverseSequence (name, \({ }^{*}\), batch_axis=1, time_axis=0)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Reverse batch of sequences having different lengths specified by sequence_lens.
For each slice i iterating on batch axis, the operator reverses the first sequence_lens[i] elements on time axis, and copies elements whose index's beyond sequence_lens[i] to the output. So the output slice i contains reversed sequences on the first sequence_lens[i] elements, then have original values copied for the other elements.

\section*{Example 1:}
input \(=[[\mathbf{0 . 0}, 4.0,8.0,12.0],[1.0,5.0,9.0,13.0],[2.0,6.0,10.0,14.0],[3.0,7.0,11.0,15.0]]\)
sequence_lens \(=[4,3,2,1]\) time_axis \(=0\) batch_axis \(=1\)
output \(=[[3.0,6.0,9.0,12.0],[2.0,5.0,8.0,13.0],[1.0,4.0,10.0,14.0],[0.0,7.0,11.0,15.0]]\)

\section*{Example 2:}
input \(=[[\mathbf{0 . 0}, 1.0,2.0,3.0],[4.0,5.0,6.0,7.0],[8.0,9.0,10.0,11.0],[12.0,13.0,14.0,15.0]]\)
sequence_lens \(=[1,2,3,4]\) time_axis \(=1\) batch_axis \(=0\)
output \(=[[\mathbf{0 . 0}, \mathbf{1 . 0}, \mathbf{2 . 0}, 3.0],[5.0,4.0,6.0,7.0],[10.0,9.0,8.0,11.0],[15.0,14.0,13.0,12.0]]\)

\section*{Node Inputs}
- input (T , single) - Tensor of rank \(\mathrm{r}>=2\).
- sequence_lens (sequence_lens_constraint, single) - Tensor specifying lengths of the sequences in a batch. It has shape [batch_size].

\section*{Node Outputs}
- Y (T , single) - Tensor with same shape of input.

\section*{Type Constraints}
- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128
- sequence_lens_constraint - int 64

\section*{Parameters}
- name - the name of the node.
- batch_axis (Optional [int], default=1) - (Optional) Specify which axis is batch axis. Must be one of 1 (default), or 0 .
- time_axis (Optional [int], default=0) - (Optional) Specify which axis is time axis. Must be one of 0 (default), or 1 .

\section*{batch_axis}
(Optional) Specify which axis is batch axis. Must be one of 1 (default), or 0 .

\section*{time_axis}
(Optional) Specify which axis is time axis. Must be one of 0 (default), or 1.
class ONNXRoiAlign (name, *, mode='avg', output_height=1, output_width=1, sampling_ratio=0, spatial_scale=1.0)
Bases: daceml.onnx. \(\bar{n} o d e s . o n n x _o p . O N N X O p\)
Region of Interest (RoI) align operation described in the [Mask R-CNN paper](https://arxiv.org/abs/1703. 06870). RoiAlign consumes an input tensor \(X\) and region of interests (rois) to apply pooling across each RoI; it produces a 4-D tensor of shape (num_rois, C, output_height, output_width).
RoiAlign is proposed to avoid the misalignment by removing quantizations while converting from original image into feature map and from feature map into RoI feature; in each ROI bin, the value of the sampled locations are computed directly through bilinear interpolation.

\section*{Node Inputs}
- \(\mathbf{X}\) (T1, single) - Input data tensor from the previous operator; 4-D feature map of shape (N , \(\mathrm{C}, \mathrm{H}, \mathrm{W}\)), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data.
- rois (T1, single) - RoIs (Regions of Interest) to pool over; rois is 2-D input of shape (num_rois, 4) given as [[x1, y1, x2, y2], ...]. The RoIs' coordinates are in the coordinate system of the input image. Each coordinate set has a \(1: 1\) correspondence with the 'batch_indices' input.
- batch_indices (T2, single) - 1-D tensor of shape (num_rois,) with each element denoting the index of the corresponding image in the batch.

\section*{Node Outputs}
- Y (T1, single) - RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element \(\mathrm{Y}[\mathrm{r}-1]\) is a pooled feature map corresponding to the r -th RoI X[r-1].

\section*{Type Constraints}
- T1-float16, float32, float 64
- T2 - int 64

\section*{Parameters}
- name - the name of the node.
- mode (Optional [str], default='avg') - The pooling method. Two modes are supported: 'avg' and 'max'. Default is 'avg'.
- output_height (Optional [int], default=1) - default 1; Pooled output Y's height.
- output_width (Optional [int], default=1) - default 1; Pooled output Y's width.
- sampling_ratio (Optional [int], default=0) - Number of sampling points in the interpolation grid used to compute the output value of each pooled output bin. If \(>0\), then exactly sampling_ratio x sampling_ratio grid points are used. If \(==0\), then an adaptive number of grid points are used (computed as ceil(roi_width / output_width), and likewise for height). Default is 0 .
- spatial_scale (Optional [float], default=1.0) - Multiplicative spatial scale factor to translate ROI coordinates from their input spatial scale to the scale used when pooling, i.e., spatial scale of the input feature map X relative to the input image. E.g.; default is 1.0f.
```

mode

```

The pooling method. Two modes are supported: 'avg' and 'max'. Default is 'avg'.

\section*{output_height}
default 1; Pooled output Y's height.
output_width
default 1; Pooled output Y's width.
sampling_ratio
Number of sampling points in the interpolation grid used to compute the output value of each pooled output bin. If \(>0\), then exactly sampling_ratio \(x\) sampling_ratio grid points are used. If \(==0\), then an adaptive number of grid points are used (computed as ceil(roi_width / output_width), and likewise for height). Default is 0 .
spatial_scale
Multiplicative spatial scale factor to translate ROI coordinates from their input spatial scale to the scale used when pooling, i.e., spatial scale of the input feature map X relative to the input image. E.g.; default is 1.0 f .
class ONNXRound (name, *)
Bases: dacemI.onnx. nodes.onnx_op. ONNXOp

Round takes one input Tensor and rounds the values, element-wise, meaning it finds the nearest integer for each value. In case of halfs, the rule is to round them to the nearest even integer. The output tensor has the same shape and type as the input.
Examples: \(\operatorname{round}([0.9])=[1.0]\) round \(([2.5])=[2.0]\) round \(([2.3])=[2.0]\) round \(([1.5])=[2.0]\) round \(([-4.5])=[-4.0]\)

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Input tensor

\section*{Node Outputs}
- Y (T, single) - Output tensor

\section*{Type Constraints}
- T-float 16 , float 32 , float 64

Parameters name - the name of the node.
class ONNXSVMClassifier (name, *, classlabels_ints=None, classlabels_strings=None, coefficients=None, kernel_params=None, kernel_type='LINEAR', post_transform='NONE', prob_a=None, prob_b=None, rho=None, support_vectors \(=\) None, vectors_per_class=None)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Support Vector Machine classifier

\section*{Node Inputs}
- \(\mathbf{X}\) (T1, single) - Data to be classified.

\section*{Node Outputs}
- Y (T2, single) - Classification outputs (one class per example).
- Z (Z_constraint, single) - Class scores (one per class per example), if prob_a and prob_b are provided they are probabilities for each class, otherwise they are raw scores.

\section*{Type Constraints}
- T1 - float 32 , float 64 , int 64 , int 32
- T2 - int 64
- Z_constraint - float 32

\section*{Parameters}
- name - the name of the node.
- classlabels_ints (Optional [List [int]], default=None) - Class labels if using integer labels.
One and only one of the 'classlabels_*' attributes must be defined.
- classlabels_strings (Optional [List [str]], default=None) - Class labels if using string labels.
One and only one of the 'classlabels_*' attributes must be defined.
- coefficients (Optional [List [float]], default=None) -
- kernel_params (Optional [List [float]], default=None) - List of 3 elements containing gamma, coef0, and degree, in that order. Zero if unused for the kernel.
- kernel_type (Optional [str], default='LINEAR') - The kernel type, one of 'LINEAR,' 'POLY,' 'RBF,' 'SIGMOID'.
- post_transform (Optional [str], default='NONE') - Indicates the transform to apply to the score.
One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'
- prob_a (Optional [List [float]], default=None) - First set of probability coefficients.
- prob_b (Optional [List [float]], default=None) - Second set of probability coefficients. This array must be same size as prob_a.
If these are provided then output Z are probability estimates, otherwise they are raw scores.
- rho (Optional [List [float]], default=None) -
- support_vectors (Optional [List [float]], default=None) -
- vectors_per_class (Optional [List [int]], default=None) -

\section*{classlabels_ints}

Class labels if using integer labels.
One and only one of the 'classlabels_*' attributes must be defined.

\section*{classlabels_strings}

Class labels if using string labels.
One and only one of the 'classlabels_*' attributes must be defined.

\section*{coefficients}

Object property of type list

\section*{kernel_params}

List of 3 elements containing gamma, coef0, and degree, in that order. Zero if unused for the kernel.

\section*{kernel_type}

The kernel type, one of 'LINEAR,' 'POLY,' 'RBF,' 'SIGMOID'.
post_transform
Indicates the transform to apply to the score.
One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'

\section*{prob_a}

First set of probability coefficients.
prob_b
Second set of probability coefficients. This array must be same size as prob_a.
If these are provided then output Z are probability estimates, otherwise they are raw scores.
rho
Object property of type list
support_vectors
Object property of type list
vectors_per_class
Object property of type list
class ONNXSVMRegressor (name, *, coefficients=None, kernel_params=None, kernel_type='LINEAR', n_supports \(=0\), one_class \(=0\), post_transform \(=\) 'NONE', rho=None, support_vectors=None)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Support Vector Machine regression prediction and one-class SVM anomaly detection.

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Data to be regressed.

\section*{Node Outputs}
- Y (Y_constraint, single) - Regression outputs (one score per target per example).

\section*{Type Constraints}
- T-float 32 , float 64 , int 64 , int 32
- Y_constraint - float 32

\section*{Parameters}
- name - the name of the node.
- coefficients (Optional [List [float]], default=None) - Support vector coefficients.
- kernel_params (Optional [List [float]], default=None) - List of 3 elements containing gamma, coef0, and degree, in that order. Zero if unused for the kernel.
- kernel_type (Optional [str], default='LINEAR') - The kernel type, one of 'LINEAR,' 'POLY,' 'RBF,' 'SIGMOID'.
- n_supports (Optional [int], default=0) - The number of support vectors.
- one_class (Optional [int], default=0) - Flag indicating whether the regression is a one-class SVM or not.
- post_transform (Optional [str], default='NONE') - Indicates the transform to apply to the score.
One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT.'
- rho (Optional [List [float]], default=None) -
- support_vectors (Optional [List [float]], default=None) - Chosen support vectors

\section*{coefficients}

Support vector coefficients.

\section*{kernel_params}

List of 3 elements containing gamma, coef0, and degree, in that order. Zero if unused for the kernel. kernel_type

The kernel type, one of 'LINEAR,' 'POLY,' 'RBF,' 'SIGMOID'.
n_supports
The number of support vectors.
one_class
Flag indicating whether the regression is a one-class SVM or not.
post_transform
Indicates the transform to apply to the score.
One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFT-
MAX_ZERO,' or 'PROBIT.'
rho
Object property of type list
support_vectors
Chosen support vectors
class ONNXScaler (name, *, offset=None, scale=None)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Rescale input data, for example to standardize features by removing the mean and scaling to unit variance.

\section*{Node Inputs}
- X (T, single) - Data to be scaled.

\section*{Node Outputs}
- Y (Y_constraint, single) - Scaled output data.

\section*{Type Constraints}
- T-float 32 , float 64 , int 64 , int 32
- Y_constraint - float 32

\section*{Parameters}
- name - the name of the node.
- offset (Optional [List [float]], default=None) - First, offset by this.
Can be length of features in an [\(\mathrm{N}, \mathrm{F}\)] tensor or length 1 , in which case it applies to all features, regardless of dimension count.
- scale (Optional [List [float]], default=None) - Second, multiply by this.
Can be length of features in an \([\mathrm{N}, \mathrm{F}]\) tensor or length 1 , in which case it applies to all features, regardless of dimension count.
Must be same length as 'offset'

\section*{offset}

First, offset by this.
Can be length of features in an \([\mathrm{N}, \mathrm{F}]\) tensor or length 1, in which case it applies to all features, regardless of dimension count.

\section*{scale}

Second, multiply by this.
Can be length of features in an [N,F] tensor or length 1 , in which case it applies to all features, regardless of dimension count.
Must be same length as 'offset'
class ONNXScatter (name, *, axis=0)
Bases: dacemI.onnx. nodes.onnx_op.ONNXOp
This operator is deprecated. Please use ScatterElements, which provides the same functionality.
Scatter takes three inputs data, updates, and indices of the same rank \(\mathrm{r}>=1\) and an optional attribute axis that identifies an axis of data (by default, the outer-most axis, that is axis 0). The output of the operation is produced by creating a copy of the input data, and then updating its value to values specified by updates at specific index positions specified by indices. Its output shape is the same as the shape of data.
For each entry in updates, the target index in data is obtained by combining the corresponding entry in indices with the index of the entry itself: the index-value for dimension = axis is obtained from the value of the corresponding entry in indices and the index-value for dimension != axis is obtained from the index of the entry itself.

For instance, in a 2-D tensor case, the update corresponding to the \([\mathrm{i}][\mathrm{j}]\) entry is performed as below: \({ }^{\text {}}\).
\[
\text { output[indices }[i][j]][j]=\text { updates }[i][j] \text { if axis }=0 \text {, output }[i j][i n d i c e s[i][j]]]=\text { updates }[i][j] \text { if axis }=1 \text {, }
\]
...
This operator is the inverse of GatherElements. It is similar to Torch's Scatter operation.
Example 1: \({ }^{\text {" }}\)
```

data}=[[0.0,0.0,0.0],[0.0,0.0,0.0],[0.0,0.0,0.0]
] indices = [
[1, 0, 2], [0, 2, 1],
] updates = [

```
[1.0, 1.1, 1.2], [2.0, 2.1, 2.2],
] output \(=\) [
\([2.0,1.1,0.0][1.0,0.0,2.2][0.0,2.1,1.2]\)
]
Example 2:
data \(=[[1.0,2.0,3.0,4.0,5.0]]\) indices \(=[[1,3]]\) updates \(=[[1.1,2.1]]\) axis \(=1\) output \(=[[1.0,1.1\), 3.0, 2.1, 5.0]]

\section*{Node Inputs}
- data (T , single) - Tensor of rank \(\mathrm{r}>=1\).
- indices (Tind, single) - Tensor of int32/int64 indices, of \(r>=1\) (same rank as input). All index values are expected to be within bounds \([-s, s-1]\) along axis of size \(s\). It is an error if any of the index values are out of bounds.
- updates (T , single) - Tensor of rank \(\mathrm{r}>=1\) (same rank and shape as indices)

\section*{Node Outputs}
- output (T , single) - Tensor of rank \(\mathrm{r}>=1\) (same rank as input).

\section*{Type Constraints}
- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128
- Tind - int 32 , int 64

\section*{Parameters}
- name - the name of the node.
- axis (Optional [int], default=0) - Which axis to scatter on. Negative value means counting dimensions from the back. Accepted range is \([-r, r-1]\) where \(r=\operatorname{rank}(\) data \()\).
axis
Which axis to scatter on. Negative value means counting dimensions from the back. Accepted range is [-r, \(r-1]\) where \(r=\operatorname{rank}(\) data \()\).

\section*{class ONNXScatterElements (name, *, axis=0)}

Bases: dacemI.onnx. nodes.onnx_op. ONNXOp
ScatterElements takes three inputs data, updates, and indices of the same rank \(\mathrm{r}>=1\) and an optional attribute axis that identifies an axis of data (by default, the outer-most axis, that is axis 0). The output of the operation is produced by creating a copy of the input data, and then updating its value to values specified by updates at specific index positions specified by indices. Its output shape is the same as the shape of data.

For each entry in updates, the target index in data is obtained by combining the corresponding entry in indices with the index of the entry itself: the index-value for dimension = axis is obtained from the value of the corresponding entry in indices and the index-value for dimension \(!=\) axis is obtained from the index of the entry itself.

For instance, in a 2-D tensor case, the update corresponding to the [i][j] entry is performed as below: \({ }^{\text {º }}\)
output[indices \([i][j]][j]=\) updates[i][j] if axis \(=0\), output[i][indices \([i][j]]=\) updates \([i][j]\) if axis \(=1\),
...
This operator is the inverse of GatherElements. It is similar to Torch's Scatter operation.

Example 1: \({ }^{`}\)
\[
\begin{aligned}
& \text { data }=[[0.0,0.0,0.0],[0.0,0.0,0.0],[0.0,0.0,0.0] \\
&] \text { indices }=[
\end{aligned}
\]
\([1,0,2],[0,2,1]\),
] updates \(=[\)
[1.0, 1.1, 1.2], [2.0, 2.1, 2.2],
] output \(=[\)
\([2.0,1.1,0.0][1.0,0.0,2.2][0.0,2.1,1.2]\)
]
- Example 2:
data \(=[[1.0,2.0,3.0,4.0,5.0]]\) indices \(=[[1,3]]\) updates \(=[[1.1,2.1]]\) axis \(=1\) output \(=[[1.0,1.1\), 3.0, 2.1, 5.0]]

\section*{Node Inputs}
- data (T , single) - Tensor of rank \(\mathrm{r}>=1\).
- indices (Tind, single) - Tensor of int32/int64 indices, of \(r>=1\) (same rank as input). All index values are expected to be within bounds [-s, s-1] along axis of size s. It is an error if any of the index values are out of bounds.
- updates (T , single) - Tensor of rank \(\mathrm{r}>=1\) (same rank and shape as indices)

\section*{Node Outputs}
- output (T , single) - Tensor of rank \(\mathrm{r}>=1\) (same rank as input).

\section*{Type Constraints}
- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32, float64, bool_, complex64, complex128
- Tind - int 32 , int 64

\section*{Parameters}
- name - the name of the node.
- axis (Optional [int], default=0) - Which axis to scatter on. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where \(r=\operatorname{rank}(\) data \()\).

\section*{axis}

Which axis to scatter on. Negative value means counting dimensions from the back. Accepted range is [-r, \(r-1]\) where \(r=\operatorname{rank}(\) data \()\).

\section*{class ONNXScatterND (name, *)}

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
ScatterND takes three inputs data tensor of rank \(\mathrm{r}>=1\), indices tensor of rank \(\mathrm{q}>=1\), and updates tensor of rank \(q+r\) - indices.shape[-1]-1. The output of the operation is produced by creating a copy of the input data, and then updating its value to values specified by updates at specific index positions specified by indices. Its output shape is the same as the shape of data. Note that indices should not have duplicate entries. That is, two or more updates for the same index-location is not supported.
indices is an integer tensor. Let \(k\) denote indices.shape[-1], the last dimension in the shape of indices.
indices is treated as a (\(\mathrm{q}-1\))-dimensional tensor of k -tuples, where each k -tuple is a partial-index into data.
Hence, k can be a value at most the rank of data. When k equals rank(data), each update entry specifies an update to a single element of the tensor. When \(k\) is less than rank(data) each update entry specifies an update to a slice of the tensor.
updates is treated as a (\(\mathrm{q}-1\))-dimensional tensor of replacement-slice-values. Thus, the first (\(\mathrm{q}-1\)) dimensions of updates.shape must match the first (\(\mathrm{q}-1\)) dimensions of indices.shape. The remaining dimensions of updates correspond to the dimensions of the replacement-slice-values. Each replacement-slice-value is a (r-k) dimensional tensor, corresponding to the trailing (r-k) dimensions of data. Thus, the shape of updates must equal indices.shape[0:q-1] ++ data.shape[k:r-1], where ++ denotes the concatenation of shapes.

The output is calculated via the following equation:

> output \(=\) np.copy(data) update_indices \(=\) indices.shape[:-1] for idx in np.ndindex(update_indices): output \([\) indices \([i d x]]=\) updates \([i d x]\)

The order of iteration in the above loop is not specified. In particular, indices should not have duplicate entries: that is, if idx1 != idx2, then indices[idx1] != indices[idx2]. This ensures that the output value does not depend on the iteration order.

This operator is the inverse of GatherND.
Example 1: \({ }^{\text {' }}\)
data \(=[1,2,3,4,5,6,7,8]\) indices \(=[[4],[3],[1],[7]]\) updates \(=[9,10,11,12]\) output \(=[1,11,3\), \(10,9,6,7,12]\)
...
Example 2: \({ }^{\text {' }}\)
```

data = [[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]], [[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2,
1]], [[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]], [[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7,
8]]]
indices =[[0],[2]] updates }=[[[5,5,5,5],[6,6,6,6],[7, 7, 7, 7], [8, 8, 8, 8]],
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]]]
output = [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], [[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3,
2, 1]], [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]], [[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6,
7, 8]]]

```

\section*{Node Inputs}
- data (T , single) - Tensor of rank \(\mathrm{r}>=1\).
- indices (indices_constraint, single) - Tensor of rank \(q>=1\).
- updates (T , single) - Tensor of rank \(\mathrm{q}+\mathrm{r}\) - indices_shape[-1]-1.

\section*{Node Outputs}
- output (T , single) - Tensor of rank \(\mathrm{r}>=1\).

\section*{Type Constraints}
```

- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16,
float32, float64,bool_, complex64, complex128

```
- indices_constraint - int 64

Parameters name - the name of the node.
class ONNXSelu (name, *, alpha=1.6732631921768188, gamma=1.0507010221481323)
Bases: dacemI.onnx. nodes.onnx_op.ONNXOp
Selu takes one input data (Tensor \(<\mathrm{T}>\)) and produces one output data (Tensor \(<\mathrm{T}>\)) where the scaled exponential linear unit function, \(y=\) gamma \(*\) (alpha \(* e^{\wedge} x\)-alpha) for \(x<=0, y=\) gamma \(* x\) for \(x>0\), is applied to the tensor elementwise.

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Input tensor

\section*{Node Outputs}
- Y (T, single) - Output tensor

\section*{Type Constraints}
- T-float16, float 32 , float 64

\section*{Parameters}
- name - the name of the node.
- alpha (Optional [float], default=1.6732631921768188) - Coefficient of SELU default to 1.67326319217681884765625 (i.e., float32 approximation of 1.6732632423543772848170429916717).
- gamma (Optional [float], default=1.0507010221481323) - Coefficient of SELU default to 1.05070102214813232421875 (i.e., float32 approximation of 1.0507009873554804934193349852946).

\section*{alpha}

Coefficient of SELU default to 1.67326319217681884765625 (i.e., float32 approximation of 1.6732632423543772848170429916717).
gamma
Coefficient of SELU default to 1.05070102214813232421875 (i.e., float32 approximation of \(1.0507009873554804934193349852946)\).
class ONNXShape (name, *)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Takes a tensor as input and outputs an 1D int64 tensor containing the shape of the input tensor.
Node Inputs
- data (T, single) - An input tensor.

\section*{Node Outputs}
- shape (T1, single) - Shape of the input tensor

\section*{Type Constraints}
- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128
- T1 - int 64

Parameters name - the name of the node.

\section*{class ONNXShrink (name, *, bias=0.0, lambd=0.5)}

Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Shrink takes one input data (Tensor<numeric>) and produces one Tensor output, having same datatype and shape with input. It has two attributes, lambd and bias. The formula of this operator is: If \(x<-l a m b d, y=x+\) bias; If \(\mathrm{x}>\) lambd, \(\mathrm{y}=\mathrm{x}\) - bias; Otherwise, \(\mathrm{y}=0\).

\section*{Node Inputs}
- input (T , single) - The input data as Tensor.

\section*{Node Outputs}
- output (T, single) - The output.

\section*{Type Constraints}
- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float 64

\section*{Parameters}
- name - the name of the node.
- bias (Optional [float], default=0.0) - The bias value added to output. Default is 0 .
- lambd (Optional [float], default=0.5) - The lambd value for the Shrink formulation. Default is 0.5 .
bias
The bias value added to output. Default is 0 .

\section*{lambd}

The lambd value for the Shrink formulation. Default is 0.5 .
class ONNXSigmoid(name, *)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Sigmoid takes one input data (Tensor \(<\mathrm{T}>\)) and produces one output data (Tensor \(<\mathrm{T}>\)) where the sigmoid function, \(\mathrm{y}=1 /(1+\exp (-\mathrm{x}))\), is applied to the tensor elementwise.

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Input tensor

\section*{Node Outputs}
- Y (T, single) - Output tensor

\section*{Type Constraints}
- T-float16, float 32, float 64

Parameters name - the name of the node.
class ONNXSign (name, *)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Calculate the sign of the given input tensor element-wise. If input \(>0\), output 1 . if input \(<0\), output -1 . if input \(=0\), output 0 .

\section*{Node Inputs}
- input (T, single) - Input tensor

\section*{Node Outputs}
- output (T, single) - The sign of the input tensor computed element-wise. It has the same shape and type of the input.

\section*{Type Constraints}
```

- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float 64

```

Parameters name - the name of the node.
class ONNXSin(name, *)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Calculates the sine of the given input tensor, element-wise.

\section*{Node Inputs}
- input (T, single) - Input tensor

\section*{Node Outputs}
- output (T, single) - The sine of the input tensor computed element-wise

\section*{Type Constraints}
- T-float16, float 32, float 64

Parameters name - the name of the node.
class ONNXSinh (name, *)
Bases: dacemI.onnx.nodes.onnx_op.ONNXOp
Calculates the hyperbolic sine of the given input tensor element-wise.

\section*{Node Inputs}
- input (T , single) - Input tensor

\section*{Node Outputs}
- output (T, single) - The hyperbolic sine values of the input tensor computed element-wise

\section*{Type Constraints}
- T-float16, float 32 , float 64

Parameters name - the name of the node.
class ONNXSize (name, *)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Takes a tensor as input and outputs a int64 scalar that equals to the total number of elements of the input tensor.

\section*{Node Inputs}
- data (T, single) - An input tensor.

\section*{Node Outputs}
- size (T1, single) - Total number of elements of the input tensor

\section*{Type Constraints}
- T-uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float 64, bool_, complex64, complex128
- T1 - int 64

Parameters name - the name of the node.

\section*{class ONNXSlice (name, *)}

Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Produces a slice of the input tensor along multiple axes. Similar to numpy: https://docs.scipy.org/doc/numpy/ reference/arrays.indexing.html Slices uses starts, ends, axes and steps inputs to specify the start and end dimension and step for each axis in the list of axes, it uses this information to slice the input data tensor. If a negative value is passed for any of the start or end indices, it represents number of elements before the end of that dimension. If the value passed to start or end is larger than the \(n\) (the number of elements in this dimension), it represents \(n\). For slicing to the end of a dimension with unknown size, it is recommended to pass in \(I N T _M A X\) when sclicing forward and 'INT_MIN' when slicing backward. If a negative value is passed for step, it represents slicing backward. However step value cannot be 0 . If axes are omitted, they are set to [0, .., ndim-1]. If steps are omitted, they are set to \([1, \ldots, 1]\) of length len(starts) Example 1:
```

data =[ [1, 2, 3, 4], [5, 6, 7, 8],
] axes =[0,1] starts = [1,0] ends =[2,3] steps = [1,2] result = [
[5, 7],
]

```

\section*{Example 2:}
```

data = [ [1, 2, 3, 4], [5, 6, 7, 8],
] starts =[0,1] ends =[-1, 1000] result = [
[2, 3, 4],
]

```

\section*{Node Inputs}
- data (T , single) - Tensor of data to extract slices from.
- starts (Tind, single) - 1-D tensor of starting indices of corresponding axis in axes
- ends (Tind, single) - 1-D tensor of ending indices (exclusive) of corresponding axis in axes
- axes (Tind, optional) - 1-D tensor of axes that starts and ends apply to. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where \(r=\operatorname{rank}(\) data \()\).
- steps (Tind, optional) - 1-D tensor of slice step of corresponding axis in axes. Negative value means slicing backward. 'steps' cannot be 0 . Defaults to 1 .

\section*{Node Outputs}
- output (T, single) - Sliced data tensor.

\section*{Type Constraints}
- T - uint8, uint16, uint 32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128
- Tind - int 32 , int 64

Parameters name - the name of the node.
class ONNXSoftmax (name, *, axis=1)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
The operator computes the softmax (normalized exponential) values for each layer in the batch of the given input.

The input does not need to explicitly be a 2D vector; rather, it will be coerced into one. For an arbitrary ndimensional tensor input in \(\left[\mathrm{a} _0, \mathrm{a} _1, \ldots, \mathrm{a} _\{\mathrm{k}-1\}, \mathrm{a} _\mathrm{k}, \ldots, \mathrm{a} _\{\mathrm{n}-1\}\right]\) and k is the axis provided, then input will be coerced into a 2 -dimensional tensor with dimensions \(\left[\mathrm{a} _0 * \ldots * \mathrm{a}_{-}\{\mathrm{k}-1\}, \mathrm{a} _\mathrm{k} * \ldots * \mathrm{a},\{\mathrm{n}-1\}\right]\). For the default case where axis \(=1\), this means the input tensor will be coerced into a 2D tensor of dimensions [a_0, a_1 * ... * a_\{n-1\}], where \(a_{-} 0\) is often the batch size. In this situation, we must have \(a _0=N\) and \(a_{-} 1 * \ldots *\) \(\mathrm{a}_{-}\{\mathrm{n}-1\}=\mathrm{D}\). Each of these dimensions must be matched correctly, or else the operator will throw errors. The output tensor has the same shape and contains the softmax values of the corresponding input.

\section*{Node Inputs}
- input (T , single) - The input tensor that's coerced into a 2D matrix of size (NxD) as described above.

\section*{Node Outputs}
- output (T, single) - The output values with the same shape as input tensor (the original size without coercion).

\section*{Type Constraints}
- T-float16, float 32 , float 64

\section*{Parameters}
- name - the name of the node.
- axis (Optional [int], default=1) - Describes the axis of the inputs when coerced to 2D; defaults to one because the 0th axis most likely describes the batch_size. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where \(\mathrm{r}=\) rank(input).

\section*{axis}

Describes the axis of the inputs when coerced to 2 D ; defaults to one because the 0th axis most likely describes the batch_size. Negative value means counting dimensions from the back. Accepted range is [-r, \(r-1]\) where \(r=\operatorname{rank}\) (input).
class ONNXSoftmaxCrossEntropyLoss (name, *, ignore_index=None, reduction='mean')
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Loss function that measures the softmax cross entropy between 'scores' and 'labels'. This operator first computes a loss tensor whose shape is identical to the labels input. If the input is 2-D with shape (\(\mathrm{N}, \mathrm{C}\)), the loss tensor may be a N-element vector \(L=\left(1 _1,1 _2, \ldots, 1 _N\right)\). If the input is \(N-D\) tensor with shape (N, C, D1, D2, \(\ldots, \mathrm{Dk})\), the loss tensor L may have (\(\mathrm{N}, \mathrm{D} 1, \mathrm{D} 2, \ldots, \mathrm{Dk}\)) as its shape and \(\mathrm{L}[\mathrm{i}],\left[\mathrm{j} _1\right]\left[\mathrm{j} _2\right] \ldots\left[\mathrm{j} _\mathrm{k}\right]\) denotes a scalar element in L. After L is available, this operator can optionally do a reduction operator.
shape(scores): (\(\mathbf{N}, \mathbf{C}\)) where \(\mathbf{C}\) is the number of classes, or (\(\mathbf{N}, \mathbf{C}, \mathbf{D 1}, \mathrm{D} 2, \ldots, \mathrm{Dk}\)), with \(\mathrm{K}>=1\) in case of K-dimensional loss.
shape(labels): (\(\mathbf{N}\)) where each value is \(\mathbf{0}<=\operatorname{labels}[\mathbf{i}]<=\mathbf{C}-1\), or (\(\mathbf{N}, \mathrm{D} 1, \mathrm{D} 2, \ldots, \mathrm{Dk}\)), with \(\mathrm{K}>=1\) in case of K-dimensional loss.

The loss for one sample, \(1 _i\), can caculated as follows: \(1[i][d 1][d 2] \ldots[d k]=-y[i][c][d 1][d 2] . .[d k]\), where \(i\) is the index of classes.
or \(1[\mathrm{i}][\mathrm{d} 1][\mathrm{d} 2] \ldots[\mathrm{dk}]=-\mathrm{y}[\mathrm{i}][\mathrm{c}][\mathrm{d} 1][\mathrm{d} 2] . .[\mathrm{dk}] *\) weights[c], if 'weights' is provided.
loss is zero for the case when label-value equals ignore_index. \(1[\mathrm{i}][\mathrm{d} 1][\mathrm{d} 2] \ldots[\mathrm{dk}]=0\), when labels[n][d1][d2]... [dk] = ignore_index
where: \(p=\operatorname{Softmax}\) (scores) \(y=\log (p) c=\operatorname{labels}[i][d 1][d 2] \ldots[d k]\)
Finally, \(L\) is optionally reduced: If reduction \(=\) 'none', the output is \(L\) with shape (\(N, D 1, D 2, \ldots, D k\)). If reduction \(=\) 'sum', the output is scalar: \(\operatorname{Sum}(\mathrm{L})\). If reduction \(=\) 'mean', the output is scalar: ReduceMean \((\mathrm{L})\), or
if weight is provided: ReduceSum(L) / ReduceSum(W), where tensor W is of shape (N, D1, D2, .., Dk) and \(\mathrm{W}[\mathrm{n}][\mathrm{d} 1][\mathrm{d} 2] \ldots[\mathrm{dk}]=\) weights[labels[i][d1][d2] \(\ldots[\mathrm{dk}]]\).

\section*{Node Inputs}
- scores (T, single) - The predicted outputs with shape [batch_size, class_size], or [batch_size, class_size, D1, D2 , ..., Dk], where K is the number of dimensions.
- labels (Tind, single) - The ground truth output tensor, with shape [batch_size], or [batch_size, D1, D2, ... Dk], where K is the number of dimensions. Labels element value shall be in range of \([0, \mathrm{C})\). If ignore_index is specified, it may have a value outside [\(0, \mathrm{C}\)) and the label values should either be in the range \([0, \mathrm{C})\) or have the value ignore_index.
- weights (T, optional) - A manual rescaling weight given to each class. If given, it has to be a 1D Tensor assigning weight to each of the classes. Otherwise, it is treated as if having all ones.

\section*{Node Outputs}
- output (T, single) - Weighted loss float Tensor. If reduction is 'none', this has the shape of [batch_size], or [batch_size, D1, D2, ..., Dk] in case of K-dimensional loss. Otherwise, it is a scalar.
- \(\log _\)prob (T, optional) - Log probability tensor. If the output of softmax is prob, its value is \(\log\) (prob).

\section*{Type Constraints}
- T-float16, float 32, float64
- Tind - int 32 , int 64

\section*{Parameters}
- name - the name of the node.
- ignore_index (Optional [int], default=None) - Specifies a target value that is ignored and does not contribute to the input gradient. It's an optional value.
- reduction (Optional [str], default='mean') - Type of reduction to apply to loss: none, sum, mean(default). 'none': no reduction will be applied, 'sum': the output will be summed. 'mean': the sum of the output will be divided by the number of elements in the output.

\section*{ignore_index}

Specifies a target value that is ignored and does not contribute to the input gradient. It's an optional value.
reduction
Type of reduction to apply to loss: none, sum, mean(default). 'none': no reduction will be applied, 'sum': the output will be summed. 'mean': the sum of the output will be divided by the number of elements in the output.

\section*{class ONNXSoftplus (name, *)}

Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Softplus takes one input data (Tensor \(<\mathrm{T}>\)) and produces one output data (Tensor \(<\mathrm{T}\rangle\)) where the softplus function, \(\mathrm{y}=\ln (\exp (\mathrm{x})+1)\), is applied to the tensor elementwise.

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) -1 D input tensor

\section*{Node Outputs}
- \(\mathbf{Y}(\mathrm{T}\), single \()-1 \mathrm{D}\) input tensor

\section*{Type Constraints}
- T-float16, float 32 , float 64

Parameters name - the name of the node.
class ONNXSoftsign (name, *)
Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Calculates the softsign \((x /(1+|x|))\) of the given input tensor element-wise.

\section*{Node Inputs}
- input (T, single) - Input tensor

\section*{Node Outputs}
- output (T , single) - The softsign \((\mathrm{x} /(1+|\mathrm{x}|))\) values of the input tensor computed elementwise

\section*{Type Constraints}
- T-float16, float 32 , float 64

Parameters name - the name of the node.
class ONNXSpaceToDepth (name, *, blocksize)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
SpaceToDepth rearranges blocks of spatial data into depth. More specifically, this op outputs a copy of the input tensor where values from the height and width dimensions are moved to the depth dimension.

\section*{Node Inputs}
- input (T, single) - Input tensor of [N,C,H,W], where N is the batch axis, C is the channel or depth, H is the height and W is the width.

\section*{Node Outputs}
- output (T, single) - Output tensor of [N, C * blocksize * blocksize, H/blocksize, W/blocksize].

\section*{Type Constraints}
- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128

\section*{Parameters}
- name - the name of the node.
- blocksize (int) - Blocks of [blocksize, blocksize] are moved.

\section*{blocksize}

Blocks of [blocksize, blocksize] are moved.
class ONNXSplit (name, *, axis \(=0\), split=None)
Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Split a tensor into a list of tensors, along the specified 'axis'. Lengths of the parts can be specified using argument 'split'. Otherwise, the tensor is split to equal sized parts.

\section*{Node Inputs}
- input (T , single) - The tensor to split

\section*{Node Outputs}
- outputs (T , variadic) - One or more outputs forming list of tensors after splitting

\section*{Type Constraints}
- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128

\section*{Parameters}
- name - the name of the node.
- axis (Optional [int], default=0) - Which axis to split on. A negative value means counting dimensions from the back. Accepted range is [-rank, rank-1] where \(r=r a n k(i n p u t)\).
- split (Optional [List [int]], default=None) - length of each output. Values should be \(>=0\).
axis
Which axis to split on. A negative value means counting dimensions from the back. Accepted range is [-rank, rank-1] where \(r=\operatorname{rank}(\) input \()\).
split
length of each output. Values should be \(>=0\).
class ONNXSqrt (name, *)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Square root takes one input data (Tensor \(<\mathrm{T}>\)) and produces one output data (Tensor \(<\mathrm{T}>\)) where the square root is, \(y=x^{\wedge} 0.5\), is applied to the tensor elementwise. If \(x\) is negative, then it will return NaN.

\section*{Node Inputs}
- \(\mathbf{X}\) (T , single) - Input tensor

\section*{Node Outputs}
- Y (T, single) - Output tensor

\section*{Type Constraints}
- T-float16, float32, float64

Parameters name - the name of the node.
class ONNXSqueeze (name, \({ }^{*}\), axes=None)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Remove single-dimensional entries from the shape of a tensor. Takes a parameter axes with a list of axes to squeeze. If axes is not provided, all the single dimensions will be removed from the shape. If an axis is selected with shape entry not equal to one, an error is raised.

\section*{Node Inputs}
- data (T, single) - Tensors with at least max(dims) dimensions.

\section*{Node Outputs}
- squeezed (T, single) - Reshaped tensor with same data as input.

\section*{Type Constraints}
- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float64, bool_, complex64, complex128

\section*{Parameters}
- name - the name of the node.
- axes (Optional [List [int]], default=None) - List of integers indicating the dimensions to squeeze. Negative value means counting dimensions from the back. Accepted range is \([-r, r-1]\) where \(r=\operatorname{rank}(\) data \()\).
axes
List of integers indicating the dimensions to squeeze. Negative value means counting dimensions from the back. Accepted range is \([-r, r-1]\) where \(r=\operatorname{rank}(\) data \()\).
class ONNXSub (name, *)
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Performs element-wise binary subtraction (with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- A (T, single) - First operand.
- B (T, single) - Second operand.

\section*{Node Outputs}
- \(\mathbf{C}\) (T, single) - Result, has same element type as two inputs

\section*{Type Constraints}
- T-uint 32, uint 64, int 32, int 64, float16, float32, float 64

Parameters name - the name of the node.
class ONNXSum (name, *)
Bases: dacemI.onnx. nodes.onnx_op. ONNXOp
Element-wise sum of each of the input tensors (with Numpy-style broadcasting support). All inputs and outputs must have the same data type. This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- data_0 (T, variadic) - List of tensors for sum.

\section*{Node Outputs}
- sum (T, single) - Output tensor.

\section*{Type Constraints}
- T-float16, float 32, float 64

Parameters name - the name of the node.
class ONNXTan (name, *)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Calculates the tangent of the given input tensor, element-wise.

\section*{Node Inputs}
- input (T, single) - Input tensor

\section*{Node Outputs}
- output (T , single) - The tangent of the input tensor computed element-wise

Type Constraints
- T-float16,float 32,float 64

Parameters name - the name of the node.
class ONNXTanh (name, *)
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Calculates the hyperbolic tangent of the given input tensor element-wise.

\section*{Node Inputs}
- input (T, single) - Input tensor

\section*{Node Outputs}
- output (T , single) - The hyperbolic tangent values of the input tensor computed elementwise

\section*{Type Constraints}
- T-float16, float 32 , float 64

Parameters name - the name of the node.
class ONNXTfIdfVectorizer (name, *, max_gram_length, max_skip_count, min_gram_length, mode, ngram_counts, ngram_indexes, pool_int64s=None, pool_strings=None, weights=None)
Bases: daceml.onnx.nodes.onnx_op.ONNXOp
This transform extracts n-grams from the input sequence and save them as a vector. Input can be either a 1-D or 2-D tensor. For 1-D input, output is the n -gram representation of that input. For 2-D input, the output is also a 2-D tensor whose i-th row is the n-gram representation of the i-th input row. More specifically, if input shape is \([C]\), the corresponding output shape would be [max(ngram_indexes) +1\(]\). If input shape is \([\mathrm{N}, \mathrm{C}]\), this operator produces a [\(\mathrm{N}, \max\) (ngram_indexes) +1]-tensor.

In contrast to standard \(n\)-gram extraction, here, the indexes of extracting an \(n\)-gram from the original sequence are not necessarily consecutive numbers. The discontinuity between indexes are controlled by the number of skips. If the number of skips is 2 , we should skip two tokens when scanning through the original sequence. Let's consider an example. Assume that input sequence is \([94,17,36,12,28]\) and the number of skips is 2 . The associated 2-grams are [94, 12] and [17, 28] respectively indexed by [0, 3] and [1, 4]. If the number of skips becomes 0 , the 2 -grams generated are \([94,17]\), \([17,36],[36,12],[12,28]\) indexed by \([0,1],[1,2],[2,3],[3,4]\), respectively.
The output vector (denoted by Y) stores the count of each n-gram; Y[ngram_indexes[i]] indicates the times that the i -th n -gram is found. The attribute ngram_indexes is used to determine the mapping between index i and the corresponding n-gram's output coordinate. If pool_int64s is [94, 17, 17, 36], ngram_indexes is [1, 0], ngram_counts=[0, 0], then the Y[0] (first element in Y) and Y[1] (second element in Y) are the counts of [17, \(36]\) and \([94,17]\), respectively. An n-gram which cannot be found in pool_strings/pool_int64s should be ignored and has no effect on the output. Note that we may consider all skips up to \(S\) when generating the \(n\)-grams.
The examples used above are true if mode is "TF". If mode is "IDF", all the counts larger than 1 would be truncated to 1 and the i-th element in weights would be used to scale (by multiplication) the count of the i-th n -gram in pool. If mode is "TFIDF", this operator first computes the counts of all n -grams and then scale them by the associated values in the weights attribute.
Only one of pool_strings and pool_int64s can be set. If pool_int64s is set, the input should be an integer tensor. If pool_strings is set, the input must be a string tensor.

\section*{Node Inputs}
- \(\mathbf{X}\) (T , single) - Input for n-gram extraction

\section*{Node Outputs}
- Y (T1, single) - Ngram results

\section*{Type Constraints}
- \(\mathbf{T}\) - int 32 , int 64
- T1 - float 32

\section*{Parameters}
- name - the name of the node.
- max_gram_length (int) - Maximum n-gram length. If this value is 3, 3-grams will be used to generate the output.
- max_skip_count (int) - Maximum number of items (integers/strings) to be skipped when constructing an n-gram from X. If max_skip_count=1, min_gram_length=2, max_gram_length \(=3\), this operator may generate 2 -grams with skip_count=0 and skip_count=1, and 3-grams with skip_count=0 and skip_count=1
- min_gram_length (int) - Minimum n-gram length. If this value is 2 and max_gram_length is 3, output may contain counts of 2-grams and 3-grams.
- mode (str) - The weighting criteria. It can be one of "TF" (term frequency), "IDF" (inverse document frequency), and "TFIDF" (the combination of TF and IDF)
- ngram_counts (List [int]) - The starting indexes of 1-grams, 2-grams, and so on in pool. It is useful when determining the boundary between two consecutive collections of n-grams. For example, if ngram_counts is [\(0,17,36\)], the first index (zero-based) of 1 -gram/2-gram/3-gram in pool are \(0 / 17 / 36\). This format is essentially identical to CSR (or CSC) sparse matrix format, and we choose to use this due to its popularity.
- ngram_indexes (List [int]) - list of int64s (type: AttributeProto::INTS). This list is parallel to the specified 'pool_*' attribute. The i-th element in ngram_indexes indicate the coordinate of the i-th n-gram in the output tensor.
- pool_int64s (Optional [List [int]], default=None) - List of int64 n-grams learned from the training set. Either this or pool_strings attributes must be present but not both. It's an 1-D tensor starting with the collections of all 1-grams and ending with the collections of n -grams. The i-th element in pool stores the n -gram that should be mapped to coordinate ngram_indexes[i] in the output vector.
- pool_strings (Optional [List [str]], default=None) - List of strings n-grams learned from the training set. Either this or pool_int64s attributes must be present but not both. It's an 1-D tensor starting with the collections of all 1-grams and ending with the collections of \(n\)-grams. The i-th element in pool stores the \(n\)-gram that should be mapped to coordinate ngram_indexes[i] in the output vector.
- weights (Optional [List [float]], default=None) - list of floats. This attribute stores the weight of each n-gram in pool. The i-th element in weights is the weight of the i-th n-gram in pool. Its length equals to the size of ngram_indexes. By default, weights is an all-one tensor.This attribute is used when mode is "IDF" or "TFIDF" to scale the associated word counts.
max_gram_length
Maximum n-gram length. If this value is 3, 3-grams will be used to generate the output.

\section*{max_skip_count}

Maximum number of items (integers/strings) to be skipped when constructing an \(n\)-gram from X . If max_skip_count \(=1\), min_gram_length \(=2\), max_gram_length \(=3\), this operator may generate 2 -grams with skip_count=0 and skip_count=1, and 3-grams with skip_count=0 and skip_count=1
min_gram_length
Minimum n-gram length. If this value is 2 and max_gram_length is 3, output may contain counts of 2-grams and 3-grams.
mode
The weighting criteria. It can be one of "TF" (term frequency), "IDF" (inverse document frequency), and "TFIDF" (the combination of TF and IDF)
ngram_counts
The starting indexes of 1 -grams, 2-grams, and so on in pool. It is useful when determining the boundary between two consecutive collections of n-grams. For example, if ngram_counts is [0, 17, 36], the first index (zero-based) of 1 -gram \(/ 2\)-gram \(/ 3\)-gram in pool are \(0 / 17 / 36\). This format is essentially identical to CSR (or CSC) sparse matrix format, and we choose to use this due to its popularity.
ngram_indexes
list of int64s (type: AttributeProto::INTS). This list is parallel to the specified 'pool_*' attribute. The i-th element in ngram_indexes indicate the coordinate of the i-th n-gram in the output tensor.
pool_int64s
List of int64 n-grams learned from the training set. Either this or pool_strings attributes must be present but not both. It's an 1-D tensor starting with the collections of all 1-grams and ending with the collections of n-grams. The i-th element in pool stores the n-gram that should be mapped to coordinate ngram_indexes[i] in the output vector.
pool_strings
List of strings n-grams learned from the training set. Either this or pool_int64s attributes must be present but not both. It's an 1-D tensor starting with the collections of all 1-grams and ending with the collections of n -grams. The i -th element in pool stores the n -gram that should be mapped to coordinate ngram_indexes[i] in the output vector.

\section*{weights}
list of floats. This attribute stores the weight of each n-gram in pool. The i-th element in weights is the weight of the i-th n-gram in pool. Its length equals to the size of ngram_indexes. By default, weights is an all-one tensor. This attribute is used when mode is "IDF" or "TFIDF" to scale the associated word counts.

\section*{class ONNXThresholdedRelu (name, *, alpha=1.0)}

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
ThresholdedRelu takes one input data (Tensor \(<\mathrm{T}>\)) and produces one output data (Tensor \(<\mathrm{T}>\)) where the rectified linear function, \(\mathrm{y}=\mathrm{x}\) for \(\mathrm{x}>\) alpha, \(\mathrm{y}=0\) otherwise, is applied to the tensor elementwise.

\section*{Node Inputs}
- \(\mathbf{X}\) (T , single) - Input tensor

\section*{Node Outputs}
- Y (T, single) - Output tensor

\section*{Type Constraints}
- T-float16, float 32, float 64

\section*{Parameters}
- name - the name of the node.
- alpha (Optional [float], default=1.0) - Threshold value

\section*{alpha}

Threshold value

\section*{class ONNXTile (name, *)}

Bases: daceml.onnx.nodes.onnx_op. ONNXOp
Constructs a tensor by tiling a given tensor. This is the same as function tile in Numpy, but no broadcast. For example \(\mathrm{A}=[[1,2],[3,4]], \mathrm{B}=[1,2]\), tile \((\mathrm{A}, \mathrm{B})=[[1,2,1,2],[3,4,3,4]]\)

\section*{Node Inputs}
- input (T , single) - Input tensor of any shape.
- repeats (T 1 , single) - 1D int64 tensor of the same length as input's dimension number, includes numbers of repeated copies along input's dimensions.

\section*{Node Outputs}
- output (T, single) - Output tensor of the same dimension and type as tensor input. output_dim[i] = input_dim[i] * repeats[i]

\section*{Type Constraints}
- T - uint8, uint16, uint 32, uint 64, int8, int16, int 32, int64, float16, float32, float64, bool_, complex64, complex128
- T1 - int 64

Parameters name - the name of the node.
```

class ONNXTopK (name, *, axis=- 1, largest=1, sorted=1)

```

Bases: daceml.onnx.nodes.onnx_op.ONNXOp
Retrieve the top-K largest or smallest elements along a specified axis. Given an input tensor of shape [a_1, a_2, ..., a_n, r] and integer argument \(k\), return two outputs:
-Value tensor of shape \(\left[\mathbf{a} _\mathbf{1}, \mathbf{a} _\mathbf{2}, \ldots, \mathbf{a} _\{\mathbf{a x i s}-\mathbf{1}\}, \mathbf{k}, \mathbf{a} _\{\mathbf{a x i s}+\mathbf{1}\}, \ldots \mathbf{a} _\mathbf{n}\right]\) which contains the values of the top k elements along the specified axis
-Index tensor of shape \(\left[\mathbf{a}_{-} \mathbf{1}, \mathbf{a} _\mathbf{2}, \ldots, \mathbf{a} _\{\mathbf{a x i s}-\mathbf{1}\}, \mathbf{k}, \mathbf{a} _\{\mathbf{a x i s}+\mathbf{1}\}, \ldots \mathbf{a} _\mathbf{n}\right]\) which contains the indices of the top k elements (original indices from the input tensor).

If "largest" is 1 (the default value) then the \(k\) largest elements are returned. If "sorted" is 1 (the default value) then the resulting \(k\) elements will be sorted. If "sorted" is 0 , order of returned 'Values' and 'Indices' are undefined.
Given two equivalent values, this operator uses the indices along the axis as a tiebreaker. That is, the element with the lower index will appear first.

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Tensor of shape [a_1, a_2, ..., a_n, r]
- K (K_constraint, single) - A 1-D tensor containing a single positive value corresponding to the number of top elements to retrieve

\section*{Node Outputs}
- Values (T, single) - Tensor of shape \(\left[\mathrm{a} _1, \mathrm{a} _2, \ldots, \mathrm{a} _\{\text {axis-1 }\}, \mathrm{k}, \mathrm{a} _\{a x i s+1\}, \ldots\right.\) a_n] containing top K values from the input tensor
- Indices (I, single) - Tensor of shape [a_1, a_2, ..., a_\{axis-1\}, k , a_\{axis+1\}, ... a_n] containing the corresponding input tensor indices for the top K values.

\section*{Type Constraints}
```

- T - uint8, uint16,uint32,uint64, int8, int16, int32, int64, float16,
float 32, float64
- I - int 64

```
- K_constraint - int 64

\section*{Parameters}
- name - the name of the node.
- axis (Optional [int], default=-1) - Dimension on which to do the sort. Negative value means counting dimensions from the back. Accepted range is \([-r, r-1]\) where \(r=r a n k\) (input).
- largest (Optional [int], default=1) - Whether to return the top-K largest or smallest elements.
- sorted (Optional [int], default=1) - Whether to return the elements in sorted order.

\section*{axis}

Dimension on which to do the sort. Negative value means counting dimensions from the back. Accepted range is \([-r, r-1]\) where \(r=\operatorname{rank}(\) input \()\).

\section*{largest}

Whether to return the top-K largest or smallest elements.

\section*{sorted}

Whether to return the elements in sorted order.
```

class ONNXTranspose (name, *,perm=None)

```

Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Transpose the input tensor similar to numpy.transpose. For example, when perm=(1, 0, 2), given an input tensor of shape \((1,2,3)\), the output shape will be \((2,1,3)\).

\section*{Node Inputs}
- data (T, single) - An input tensor.

\section*{Node Outputs}
- transposed (T, single) - Transposed output.

\section*{Type Constraints}
- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128

\section*{Parameters}
- name - the name of the node.
- perm (Optional [List [int]], default=None) - A list of integers. By default, reverse the dimensions, otherwise permute the axes according to the values given.
perm
A list of integers. By default, reverse the dimensions, otherwise permute the axes according to the values given.
class ONNXTreeEnsembleClassifier(name, *, base_values=None, class_ids=None, class_nodeids=None, class_treeids=None, class_weights=None, classlabels_int64s=None, classlabels_strings=None, nodes_falsenodeids=None, nodes_featureids=None, nodes_hitrates=None, nodes_missing_value_tracks_true \(=\) None, nodes_modes=None, nodes_nodeids=None, nodes_treeids=None, nodes_truenodeids=None, nodes_values \(=\) None, post_transform \(=\) 'NONE')
Bases: daceml.onnx.nodes.onnx_op.ONNXOp

Tree Ensemble classifier. Returns the top class for each of N inputs.
 The attributes named 'nodes_X' form a sequence of tuples, associated by index into the sequences, which must all be of equal length. These tuples define the nodes.
 Similarly, all fields prefixed with 'class_' are tuples of votes at the leaves. A leaf may have multiple votes, where each vote is weighted by the associated class_weights index.
 One and only one of classlabels_strings or classlabels_int64s will be defined. The class_ids are indices into this list.

\section*{Node Inputs}
- \(\mathbf{X}\) (T1, single) - Input of shape [N,F]

\section*{Node Outputs}
- Y (T2, single) - N, Top class for each point
- Z (Z_constraint, single) - The class score for each class, for each point, a tensor of shape [N,E].

\section*{Type Constraints}
- T1 - float 32 , float 64 , int 64 , int 32
- T2 - int 64
- Z_constraint - float 32

\section*{Parameters}
- name - the name of the node.
- base_values (Optional [List [float]], default=None) - Base values for classification, added to final class score; the size must be the same as the classes or can be left unassigned (assumed 0)
- class_ids (Optional [List [int]], default=None) - The index of the class list that each weight is for.
- class_nodeids (Optional [List [int]], default=None) - node id that this weight is for.
- class_treeids (Optional [List [int]], default=None) - The id of the tree that this node is in.
- class_weights (Optional [List [float]], default=None) - The weight for the class in class_id.
- classlabels_int64s (Optional [List [int]], default=None) - Class labels if using integer labels.
One and only one of the 'classlabels_*' attributes must be defined.
- classlabels_strings (Optional [List [str]], default=None) - Class labels if using string labels.
One and only one of the 'classlabels_*' attributes must be defined.
- nodes_falsenodeids (Optional [List [int]], default=None) - Child node if expression is false.
- nodes_featureids (Optional [List [int]], default=None) - Feature id for each node.
- nodes_hitrates (Optional [List [float]], default=None) - Popularity of each node, used for performance and may be omitted.
- nodes_missing_value_tracks_true (Optional [List [int]], default=None) - For each node, define what to do in the presence of a missing value: if a value is missing
\((\mathrm{NaN})\), use the 'true' or 'false' branch based on the value in this array.
This attribute may be left undefined, and the defalt value is false (0) for all nodes.
- nodes_modes (Optional [List [str]], default=None) - The node kind, that is, the comparison to make at the node. There is no comparison to make at a leaf node. \(<\) br \(>\) One of 'BRANCH_LEQ', 'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ', 'LEAF'
- nodes_nodeids (Optional [List [int]], default=None) - Node id for each node. Ids may restart at zero for each tree, but it not required to.
- nodes_treeids (Optional [List [int]], default=None) - Tree id for each node.
- nodes_truenodeids (Optional [List [int]], default=None) - Child node if expression is true.
- nodes_values (Optional [List [float]], default=None) - Thresholds to do the splitting on for each node.
- post_transform (Optional [str], default='NONE') - Indicates the transform to apply to the score.
 One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT.'

\section*{base_values}

Base values for classification, added to final class score; the size must be the same as the classes or can be left unassigned (assumed 0)

\section*{class_ids}

The index of the class list that each weight is for.

\section*{class_nodeids}
node id that this weight is for.
class_treeids
The id of the tree that this node is in.

\section*{class_weights}

The weight for the class in class_id.

\section*{classlabels_int64s}

Class labels if using integer labels.
One and only one of the 'classlabels_*' attributes must be defined.

\section*{classlabels_strings}

Class labels if using string labels.
One and only one of the 'classlabels_*' attributes must be defined.

\section*{nodes_falsenodeids}

Child node if expression is false.

\section*{nodes_featureids}

Feature id for each node.

\section*{nodes_hitrates}

Popularity of each node, used for performance and may be omitted.
nodes_missing_value_tracks_true
For each node, define what to do in the presence of a missing value: if a value is missing (NaN), use the 'true' or 'false' branch based on the value in this array.
This attribute may be left undefined, and the defalt value is false (0) for all nodes.

\section*{nodes_modes}

The node kind, that is, the comparison to make at the node. There is no comparison to make
at a leaf node.
One of 'BRANCH_LEQ', 'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ', 'LEAF'

\section*{nodes_nodeids}

Node id for each node. Ids may restart at zero for each tree, but it not required to.

\section*{nodes_treeids}

Tree id for each node.
```

nodes_truenodeids

```

Child node if expression is true.
nodes_values
Thresholds to do the splitting on for each node.
post_transform
Indicates the transform to apply to the score.
 One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFT-
MAX_ZERO,' or 'PROBIT.'
class ONNXTreeEnsembleRegressor (name, *, aggregate_function='SUM', base_values=None, n_targets \(=\) None, \(\quad\) nodes_falsenodeids=None, nodes_featureids=None, nodes_hitrates=None, nodes_missing_value_tracks_true=None, nodes_modes=None, nodes_nodeids=None, nodes_treeids=None, nodes_truenodeids=None, nodes_values=None, post_transform='NONE', target_ids=None, target_nodeids=None, target_treeids=None, target_weights=None)
Bases: dacemI.onnx. nodes.onnx_op.ONNXOp
Tree Ensemble regressor. Returns the regressed values for each input in N.
 All args with nodes_ are fields of a tuple of tree nodes, and it is assumed they are the same length, and an index i will decode the tuple across these inputs. Each node id can appear only once for each tree id.
 All fields prefixed with target_ are tuples of votes at the leaves.
 A leaf may have multiple votes, where each vote is weighted by the associated target_weights index.
 All trees must have their node ids start at 0 and increment by \(1 .<b r>\) Mode enum is BRANCH_LEQ, BRANCH_LT, BRANCH_GTE, BRANCH_GT, BRANCH_EQ, BRANCH_NEQ, LEAF

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - Input of shape [N,F]

\section*{Node Outputs}
- Y (Y_constraint, single) - N classes

\section*{Type Constraints}
- T-float 32 , float 64 , int 64 , int 32
- Y_constraint - float 32

\section*{Parameters}
- name - the name of the node.
- aggregate_function (Optional [str], default='SUM') - Defines how to aggregate leaf values within a target.
One of 'AVERAGE,' 'SUM,' 'MIN,' 'MAX.'
- base_values (Optional [List [float]], default=None) - Base values for classification, added to final class score; the size must be the same as the classes or can be left unassigned (assumed 0)
- n_targets (Optional [int], default=None) - The total number of targets.
- nodes_falsenodeids (Optional [List [int]], default=None) - Child node if expression is false
- nodes_featureids (Optional [List [int]], default=None) - Feature id for each node.
- nodes_hitrates (Optional [List [float]], default=None) - Popularity of each node, used for performance and may be omitted.
- nodes_missing_value_tracks_true (Optional [List [int]], default=None) - For each node, define what to do in the presence of a NaN: use the 'true' (if the attribute value is 1) or 'false' (if the attribute value is 0) branch based on the value in this array.
This attribute may be left undefined and the defalt value is false (0) for all nodes.
- nodes_modes (Optional [List [str]], default=None) - The node kind, that is, the comparison to make at the node. There is no comparison to make at a leaf node.
One of 'BRANCH_LEQ', 'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ', 'LEAF'
- nodes_nodeids (Optional [List [int]], default=None) - Node id for each node. Node ids must restart at zero for each tree and increase sequentially.
- nodes_treeids (Optional [List [int]], default=None) - Tree id for each node.
- nodes_truenodeids (Optional [List [int]], default=None) - Child node if expression is true
- nodes_values (Optional [List [float]], default=None) - Thresholds to do the splitting on for each node.
- post_transform (Optional [str], default='NONE') - Indicates the transform to apply to the score.
One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'
- target_ids (Optional [List [int]], default=None) - The index of the target that each weight is for
- target_nodeids (Optional [List [int]], default=None) - The node id of each weight
- target_treeids (Optional [List [int]], default=None) - The id of the tree that each node is in.
- target_weights (Optional [List [float]], default=None) - The weight for each target

\section*{aggregate_function}

Defines how to aggregate leaf values within a target.
One of 'AVERAGE,' 'SUM,' 'MIN,' 'MAX.'

\section*{base_values}

Base values for classification, added to final class score; the size must be the same as the classes or can be left unassigned (assumed 0)

\section*{n_targets}

The total number of targets.

\section*{nodes_falsenodeids}

Child node if expression is false
nodes_featureids
Feature id for each node.

\section*{nodes_hitrates}

Popularity of each node, used for performance and may be omitted.

\section*{nodes_missing_value_tracks_true}

For each node, define what to do in the presence of a NaN : use the 'true' (if the attribute value is 1) or 'false' (if the attribute value is 0) branch based on the value in this array. \(<\) br \(>\) This attribute may be left undefined and the defalt value is false (0) for all nodes.

\section*{nodes_modes}

The node kind, that is, the comparison to make at the node. There is no comparison to make at a leaf node.
One of 'BRANCH_LEQ', 'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ', 'LEAF'

\section*{nodes_nodeids}

Node id for each node. Node ids must restart at zero for each tree and increase sequentially.

\section*{nodes_treeids}

Tree id for each node.

\section*{nodes_truenodeids}

Child node if expression is true

\section*{nodes_values}

Thresholds to do the splitting on for each node.
post_transform
Indicates the transform to apply to the score.
One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'
```

target_ids

```

The index of the target that each weight is for

\section*{target_nodeids}

The node id of each weight

\section*{target_treeids}

The id of the tree that each node is in.

\section*{target_weights}

The weight for each target
class ONNXUnique (name, *, axis=None, sorted \(=1\))
Bases: daceml.onnx. nodes.onnx_op. ONNXOp
Find the unique elements of a tensor. When an optional attribute 'axis' is provided, unique subtensors sliced along the 'axis' are returned. Otherwise the input tensor is flattened and unique values of the flattened tensor are returned.

This operator returns the unique values or sliced unique subtensors of the input tensor and three optional outputs. The first output tensor ' \(Y\) ' contains all unique values or subtensors of the input. The second optional output tensor 'indices' contains indices of ' Y ' elements' first occurance in ' X '.. The third optional output tensor 'inverse_indices' contains, for elements of ' X ', its corresponding indices in ' Y '. ". The fourth optional output tensor 'counts' contains the count of each element of ' Y ' in the input.

Outputs are either sorted in ascending order or optionally in the order of the first occurrence of the values in the input.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.unique.html
Example 1: input_ \(\mathrm{X}=[2,1,1,3,4,3]\) attribute_sorted \(=0\) attribute_axis \(=\) None output_ \(Y=[2,1,3,4]\) output_indices \(=[0,1,3,4]\) output_inverse_indices \(=[0,1,1,2,3,2]\) output_counts \(=[1,2,2,1]\)

Example 2: input_X \(=[[1,3],[2,3]]\) attribute_sorted \(=1\) attribute_axis \(=\) None output_ \(Y=[1,2,3]\) output_indices \(=[0,2,1]\) output_inverse_indices \(=[0,2,1,2]\) output_counts \(=[1,1,2]\)
Example 3: input_X \(=[[1,0,0],[1,0,0],[2,3,4]]\) attribute_sorted \(=1\) attribute_axis \(=0\) output_Y \(=[[1,0\), \(0],[2,3,4]]\) output_indices \(=[0,2]\) output_inverse_indices \(=[0,0,1]\) output_counts \(=[2,1]\)

\section*{Example 4:}
\(\operatorname{input}_{-} \mathrm{x}=[[[1 ., 1],.[0 ., 1],.[2 ., 1],.[0 ., 1]],. \quad[[1 ., 1],.[0 ., 1],.[2 ., 1],.[0 ., 1]]\).
attribute_sorted = 1 attribute_axis \(=1\)
intermediate data are presented below for better understanding:
there are 4 subtensors sliced along axis 1 of input_x \((\) shape \(=(2,4,2))\) : \(:[[1,1],[1,1]]\),
[[0, 1], [0, 1]], [[2, 1], [2, 1]], [[0, 1], [0, 1]].
there are 3 unique subtensors: \([[1,1],[1,1]],[[0,1],[0,1]],[[2,1],[2,1]]\).
sorted unique subtensors: B: \([[0,1],[0,1]]\),
[[1, 1], [1, 1]], [[2, 1], [2, 1]].
output_Y is constructed from B: [[[0. 1.], [1. 1.], [2. 1.]],
[[0. 1.], [1. 1.], [2. 1.]]]
output_indices is to map from B to \(\mathrm{A}:[1,0,2]\)
output_inverse_indices is to map from A to B : \([1,0,2,0]\)
output_counts \(=\left[\begin{array}{lll}2 & 1 & 1\end{array}\right]\)

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - A N-D input tensor that is to be processed.

\section*{Node Outputs}
- \(Y\) (T, single) - A tensor of the same type as ' \(X\) ' containing all the unique values or subtensors sliced along a provided 'axis' in ' X ', either sorted or maintained in the same order they occur in input ' X '
- indices (indices_constraint, optional) - A 1-D INT64 tensor containing indices of ' Y ' elements' first occurance in ' X '. When 'axis' is provided, it contains indices to subtensors in input ' X ' on the 'axis'. When 'axis' is not provided, it contains indices to values in the flattened input tensor.
- inverse_indices (inverse_indices_constraint, optional) - A 1-D INT64 tensor containing, for elements of ' X ', its corresponding indices in ' Y '. When 'axis' is provided, it contains indices to subtensors in output ' Y ' on the 'axis'. When 'axis' is not provided, it contains indices to values in output ' Y '.
- counts (counts_constraint, optional) - A 1-D INT64 tensor containing the count of each element of ' \(Y\) ' in input ' \(X\) '

\section*{Type Constraints}
- T - uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128
- indices_constraint - int 64
- inverse_indices_constraint - int 64
- counts_constraint - int 64

\section*{Parameters}
- name - the name of the node.
- axis (Optional [int], default=None) - (Optional) The dimension to apply unique. If not specified, the unique elements of the flattened input are returned. Negative value means counting dimensions from the back. Accepted range is \([-\mathrm{r}, \mathrm{r}-1]\) where \(\mathrm{r}=\operatorname{rank}\) (input).
- sorted (Optional [int], default=1) - (Optional) Whether to sort the unique elements in ascending order before returning as output. Must be one of 0 , or 1 (default).

\section*{axis}
(Optional) The dimension to apply unique. If not specified, the unique elements of the flattened input are returned. Negative value means counting dimensions from the back. Accepted range is \([-r, r-1]\) where \(r=\) rank(input).

\section*{sorted}
(Optional) Whether to sort the unique elements in ascending order before returning as output. Must be one of 0 , or 1 (default).

\section*{class ONNXUnsqueeze (name, *, axes)}

Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Insert single-dimensional entries to the shape of an input tensor (data). Takes one required argument axes which contains a list of dimension indices and this operator will insert a dimension of value 1 into the corresponding index of the output tensor (expanded).

For example: Given an input tensor (data) of shape [3, 4, 5], then Unsqueeze(data, axes=[0, 4]) outputs a tensor (expanded) containing same data as data but with shape \([1,3,4,5,1]\).
The attribute axes should not contain any duplicate entries. It is an error if it contains duplicates. The rank of the output tensor (output_rank) is the rank of the input tensor (data) plus the number of values in axes. Each value in axes should be within the (inclusive) range [-output_rank, output_rank-1]. The order of values in axes does not matter and can come in any order.

\section*{Node Inputs}
- data (T , single) - Original tensor

\section*{Node Outputs}
- expanded (T , single) - Reshaped tensor with same data as input.

\section*{Type Constraints}
- T - uint8, uint16, uint 32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128

\section*{Parameters}
- name - the name of the node.
- axes (List [int]) - List of integers indicating the dimensions to be inserted. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where \(\mathrm{r}=\) rank(expanded).

\section*{axes}

List of integers indicating the dimensions to be inserted. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r \(=\) rank(expanded).
class ONNXUpsample (name, *, mode='nearest')
Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Upsample the input tensor. Each dimension value of the output tensor is:
```

output_dimension = floor(input_dimension * scale).

```

\section*{Node Inputs}
- \(\mathbf{X}\) (T, single) - N-D tensor
- scales (scales_constraint, single) - The scale array along each dimension. It takes value greater than or equal to 1 . The number of elements of 'scales' should be the same as the rank of input ' X '.

\section*{Node Outputs}
- \(\mathbf{Y}(\mathrm{T}\), single \()-\mathrm{N}-\mathrm{D}\) tensor after resizing

\section*{Type Constraints}
- T-uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float 32 , float64, bool_, complex64, complex128
- scales_constraint - float 32

\section*{Parameters}
- name - the name of the node.
- mode (Optional [str], default='nearest') - Two interpolation modes: nearest (default), and linear (including bilinear, trilinear, etc)
mode
Two interpolation modes: nearest (default), and linear (including bilinear, trilinear, etc)

\section*{class ONNXWhere (name, *)}

Bases: dacemI.onnx. nodes.onnx_op. ONNXOp
Return elements, either from X or Y , depending on condition (with Numpy-style broadcasting support). Where behaves like numpy.where with three parameters: https://docs.scipy.org/doc/numpy/ reference/generated/numpy.where.html

\section*{Node Inputs}
- condition (B, single) - When True (nonzero), yield X, otherwise yield Y
- \(\mathbf{X}\) (T , single) - values selected at indices where condition is True
- Y (T, single) - values selected at indices where condition is False

\section*{Node Outputs}
- output (T , single) - Tensor of shape equal to the broadcasted shape of condition, X , and Y .

\section*{Type Constraints}
- B-bool_
- T - uint8, uint16, uint 32, uint64, int8, int16, int32, int64, float16, float32, float64, bool_, complex64, complex128

Parameters name - the name of the node.

\section*{class ONNXXor (name, *)}

Bases: daceml.onnx. nodes.onnx_op.ONNXOp
Returns the tensor resulted from performing the \(x o r\) logical operation elementwise on the input tensors \(A\) and \(B\) (with Numpy-style broadcasting support).

This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check [the doc](Broadcasting.md).

\section*{Node Inputs}
- A (T, single) - First input operand for the logical operator.
- B (T, single) - Second input operand for the logical operator.

\section*{Node Outputs}
- C (T1, single) - Result tensor.

\section*{Type Constraints}
- T-bool_
- T1-bool_

Parameters name - the name of the node.

\section*{DACEML.PYTORCH}
class DaceModule (module, dummy_inputs=None, cuda=None, training=False, backward=False, apply_strict=True, auto_optimize=True, debug_transients=False, sdfg_name=None)
Bases: torch.nn.modules.module.Module
A wrapper that converts a PyTorch nn. Module to a PyTorch compatible data-centric nn. Module.

\section*{Parameters}
- module (Module) - the model to wrap.
- dummy_inputs (Optional[Tuple[Tensor]]) - a tuple of tensors to use as input when tracing model.
- cuda (Optional[bool]) - if True, the module will execute using CUDA. If None, it will be detected from the module.
- training (bool) - whether to use train mode when tracing model.
- backward - whether to enable the backward pass.
- apply_strict (bool) - whether to apply strict transforms after conversion (this generally improves performance, but can be slow).
- sdfg_name (Optional[str]) - the name to give to the \(\operatorname{sdfg}\) (defaults to dace_model).
- auto_optimize (bool) - whether to apply automatic optimizations.
- debug_transients (bool) - if True, the module will have all transients as outputs.

\section*{Example}
```

>>> from daceml.pytorch import DaceModule
>>> class MyModule(nn.Module):
... def forward(self, x):
... x = torch.log(x)
... x = torch.sqrt(x)
... return x
>>> module = MyModule()
>>> module(torch.ones(2))
tensor([0., 0.])
>>> dace_module = DaceModule(module)
>>> dace_module(torch.ones(2))
tensor([0., 0.])

```

Initializes internal Module state, shared by both nn.Module and ScriptModule.
append_post_autodiff_hook(name,func)

\section*{Parameters}
- name (str)-
- func (Callable[[dace.sdfg.sdfg.SDFG, dace.sdfg.sdfg.SDFG], None]) -
append_post_compile_hook (name, func)

\section*{Parameters}
- name (str) -
- func (Callable[[dace.codegen.compiled_sdfg.CompiledSDFG], None]) -
append_post_onnx_hook (name, func)

\section*{Parameters}
- name (str)-
- func (Callable [[DaceModule], None])-

\section*{forward (*actual_inputs)}

Execute the forward pass using the traced module.
```

post_autodiff_hooks: OrderedDict[str, Callable[[dace.SDFG, dace.SDFG], None]]

```
hooks that are executed after the backpropagation sdfg has been created
post_compile_hooks: OrderedDict[str, Callable[[compiled_sdfg.CompiledSDFG], None]]
hooks that are executed after the sdfg is compiled
```

post_onnx_hooks: OrderedDict[str, Callable[[DaceModule], None]]

```
hooks that are executed after onnx graph is imported to an SDFG
prepend_post_autodiff_hook (name, func)

\section*{Parameters}
- name (str)-
- func (Callable[[dace.sdfg.sdfg.SDFG, dace.sdfg.sdfg.SDFG], None]) -
prepend_post_compile_hook (name, func)
Parameters
- name (str)-
- func (Callable[[dace.codegen.compiled_sdfg.CompiledSDFG], None] -
prepend_post_onnx_hook (name, func)

\section*{Parameters}
- name (str)-
- func (Callable [[DaceModule], None])-
reset_sdfg()
Clear the sdfg so that optimizations are reapplied.
training: bool
@dace_module (moduleclass, dummy_inputs=None, cuda=None, training=False, backward=False, apply_strict=True,_auto_optimize=True, sdfg_name=None, debug_transients=False)
Decorator to apply on a definition of a torch.nn. Module to convert it to a data-centric module upon construction.

\section*{Example}
```

>>> from daceml.pytorch import dace_module
>>> @dace_module
... class MyDecoratedModule(nn.Module):
... def forward(self, x):
... x = torch.log(x)
... x = torch.sqrt(x)
... return x
>>> module = MyDecoratedModule()
>>> module(torch.ones(2))
tensor([0., 0.])

```

\section*{Parameters}
- moduleclass - the model to wrap.
- dummy_inputs (Optional[Tuple[Tensor]]) - a tuple of tensors to use as input when tracing model.
- cuda (Optional[bool]) - if True, the module will execute using CUDA. If None, it will be detected from the module.
- training (bool) - whether to use train mode when tracing model.
- backward - whether to enable the backward pass.
- apply_strict (bool) - whether to apply strict transforms after conversion (this generally improves performance, but can be slow).
- auto_optimize (bool) - whether to apply automatic optimizations.
- sdfg_name (Optional[str]) - the name to give to the sdfg (defaults to dace_model).
- debug_transients (bool) - if True, the module will have all transients as outputs.

Return type Type[DaceModule]

\section*{INDICES AND TABLES}
- genindex
- modindex

\title{
PYTHON MODULE INDEX
}
```

d
daceml.onnx,27
daceml.onnx.environments.onnxruntime,
36
daceml.onnx.nodes.onnx_op, 36
daceml.onnx.op_implementations.img_op_implementations,
35
daceml.onnx.op_implementations.pure_implementations,
34
daceml.pytorch,167

```

\section*{Symbols}

\section*{__call_ () (ONNXModel method), 28}

\section*{A}
activation_alpha (ONNXGRU attribute), 70
activation_alpha (ONNXLSTM attribute), 89
activation_alpha (ONNXRNN attribute), 121
activation_beta (ONNXGRU attribute), 70
activation_beta (ONNXLSTM attribute), 89
activation_beta (ONNXRNN attribute), 121
activations (ONNXGRU attribute), 70
activations (ONNXLSTM attribute), 89
activations (ONNXRNN attribute), 121
add_backward_pass() (in module daceml.autodiff), 23
aggregate_function (ONNXTreeEnsembleRegressor attribute), 161
alpha (ONNXAdam attribute), 40
a lpha (ONNXCelu attribute), 50
a lpha (ONNXElu attribute), 64
alpha (ONNXGemm attribute), 76
alpha (ONNXHardSigmoid attribute), 82
alpha (ONNXLeakyRelu attribute), 91
alpha (ONNXLRN attribute), 86
alpha (ONNXMomentum attribute), 105
alpha (ONNXSelu attribute), 144
alpha (ONNXThresholdedRelu attribute), 155
append_post_autodiff_hook() (DaceModule method), 167
append_post_compile_hook() (DaceModule method), 168
append_post_onnx_hook() (DaceModule method), 168
attribute_type (ONNXAttribute attribute), 30
attributes (ONNXSchema attribute), 32
auto_pad (ONNXAveragePool attribute), 45
auto_pad (ONNXConv attribute), 54
auto_pad (ONNXConvInteger attribute), 56
auto_pad (ONNXConvTranspose attribute), 58
auto_pad (ONNXLpPool attribute), 96
auto_pad (ONNXMaxPool attribute), 99
auto_pad (ONNXQLinearConv attribute), 117
axes (ONNXMeanVarianceNormalization attribute), 102
axes (ONNXReduceL1 attribute), 126
axes (ONNXReduceL2 attribute), 126
axes (ONNXReduceLogSum attribute), 127
axes (ONNXReduceLogSumExp attribute), 128
axes (ONNXReduceMax attribute), 128
axes (ONNXReduceMean attribute), 129
axes (ONNXReduceMin attribute), 129
axes (ONNXReduceProd attribute), 130
axes (ONNXReduceSum attribute), 131
axes (ONNXReduceSumSquare attribute), 131
axes (ONNXSqueeze attribute), 152
axes (ONNXUnsqueeze attribute), 164
axis (ONNXArgMax attribute), 42
axis (ONNXArgMin attribute), 42
axis (ONNXCompress attribute), 51
axis (ONNXConcat attribute), 52
axis (ONNXFlatten attribute), 68
axis (ONNXGather attribute), 72
axis (ONNXGatherElements attribute), 73
axis (ONNXHardmax attribute), 83
axis (ONNXLogSoftmax attribute), 95
axis (ONNXLpNormalization attribute), 95
axis (ONNXOneHot attribute), 112
axis (ONNXScatter attribute), 141
axis (ONNXScatterElements attribute), 142
axis (ONNXSoftmax attribute), 148
axis (ONNXSplit attribute), 151
axis (ONNXTopK attribute), 157
axis (ONNXUnique attribute), 164

\section*{B}
backward () (BackwardImplementation static method), 24
backward_can_be_applied() (BackwardImplementation static method), 24
backward_generator (BackwardContext attribute), 25
backward_implementation (ONNXOp attribute), 28
backward_sdfg (BackwardContext attribute), 25
backward_state (BackwardContext attribute), 25
BackwardContext (class in daceml.autodiff), 24
BackwardImplementation (class daceml.autodiff), 24
BackwardResult (class in daceml.autodiff), 25
base_values (ONNXTreeEnsembleClassifier attribute), 159
base_values (ONNXTreeEnsembleRegressor attribute), 161
batch_axis (ONNXReverseSequence attribute), 135
batch_dims (ONNXGatherND attribute), 75
beta (ONNXAdam attribute), 40
bet a (ONNXGemm attribute), 76
bet a (ONNXHardSigmoid attribute), 82
bet a (ONNXLRN attribute), 86
bet a (ONNXMomentum attribute), 105
bias (ONNXLRN attribute), 87
bias (ONNXShrink attribute), 145
blocksize (ONNXDepthToSpace attribute), 61
blocksize (ONNXSpaceToDepth attribute), 150

\section*{C}
cats_int 64 s (ONNXCategoryMapper attribute), 49
cats_int64s (ONNXOneHotEncoder attribute), 112
cats_strings (ONNXCategoryMapper attribute), 49
cats_strings (ONNXOneHotEncoder attribute), 112
ceil_mode (ONNXAveragePool attribute), 45
ceil_mode (ONNXMaxPool attribute), 99
center_point_box (ONNXNonMaxSuppression attribute), 109
class_ids (ONNXTreeEnsembleClassifier attribute), 159
class_nodeids (ONNXTreeEnsembleClassifier attribute), 159
class_treeids (ONNXTreeEnsembleClassifier attribute), 159
class_weights (ONNXTreeEnsembleClassifier attribute), 159
classlabels_int64s (ONNXTreeEnsembleClassifier attribute), 159
classlabels_ints (ONNXLinearClassifier attribute), 93
classlabels_ints (ONNXSVMClassifier attribute), 138
classlabels_strings (ONNXLinearClassifier attribute), 93
classlabels_strings (ONNXSVMClassifier attribute), 138
classlabels_strings (ONNXTreeEnsembleClassifier attribute), 159
clip (ONNXGRU attribute), 70
clip (ONNXLSTM attribute), 89
clip (ONNXRNN attribute), 121
coefficients (ONNXLinearClassifier attribute), 93
in
coefficients (ONNXLinearRegressor attribute), 94
coefficients (ONNXSVMClassifier attribute), 138
compile_and_init () (ONNXModel method), 28
coordinate_transformation_mode (ONNXResize attribute), 133
count_include_pad (ONNXAveragePool attribute), 45
cubic_coeff_a (ONNXResize attribute), 134

D
dace_module() (in module daceml.pytorch), 168
daceml.onnx module, 27
daceml.onnx.environments.onnxruntime module, 36
daceml.onnx.nodes.onnx_op
module, 36
daceml.onnx.op_implementations.img_op_implementati module, 35
daceml.onnx.op_implementations.pure_implementation module, 34
daceml.pytorch module, 167
DaceModule (class in daceml.pytorch), 167
decay_factor (ONNXAdagrad attribute), 38
default_float (ONNXLabelEncoder attribute), 91
default_int 64 (ONNXCategoryMapper attribute), 49
default_int 64 (ONNXLabelEncoder attribute), 91
default_string (ONNXCategoryMapper attribute), 49
default_string (ONNXLabelEncoder attribute), 91
default_value (ONNXAttribute attribute), 30
description (ONNXAttribute attribute), 30
description (ONNXParameter attribute), 31
detect_negative (ONNXIsInf attribute), 85
detect_positive (ONNXISInf attribute), 85
dilations (ONNXConv attribute), 54
dilations (ONNXConvInteger attribute), 56
dilations (ONNXConvTranspose attribute), 58
dilations (ONNXMaxPool attribute), 99
dilations (ONNXQLinearConv attribute), 117
direction (ONNXBitShift attribute), 48
direction (ONNXGRU attribute), 71
direction (ONNXLSTM attribute), 89
direction (ONNXRNN attribute), 121
doc (ONNXSchema attribute), 32
domain (ONNXSchema attribute), 32
dtype (ONNXEyeLike attribute), 66
dtype (ONNXMultinomial attribute), 106
dtype (ONNXRandomNormal attribute), 122
dtype (ONNXRandomNormalLike attribute), 123
dtype (ONNXRandomUniform attribute), 123
dtype (ONNXRandomUniformLike attribute), 124

\section*{E}
epsilon (ONNXAdagrad attribute), 38
epsilon (ONNXAdam attribute), 40
epsilon (ONNXBatchNormalization attribute), 47
epsilon (ONNXInstanceNormalization attribute), 85
equation (ONNXEinsum attribute), 64
exclude_outside (ONNXResize attribute), 134
exclusive (ONNXCumSum attribute), 60
extrapolation_value (ONNXResize attribute), 134

\section*{F}

Float (ONNXAttributeType attribute), 30
Floats (ONNXAttributeType attribute), 30
fmod (ONNXMod attribute), 103
forward() (DaceModule method), 168
forward() (ONNXForward static method), 33
forward_can_be_applied() (ONNXForward static method), 33
forward_sdfg (BackwardContext attribute), 25
forward_state (BackwardContext attribute), 25
from_json () (ONNXAttribute class method), 30
from_json() (ONNXParameter class method), 31
from_json() (ONNXSchema class method), 32
from_json() (ONNXTypeConstraint class method), 31
from_onnx_proto () (ONNXAttribute class method), 30
from_onnx_proto() (ONNXParameter class method), 31
from_onnx_proto() (ONNXSchema class method), 32
from_onnx_proto() (ONNXTypeConstraint class method), 31

\section*{G}
gamma (ONNXSelu attribute), 144
get_onnx_node () (in module daceml.onnx), 27
given_grad_names (BackwardResult attribute), 25
graph_name (ONNXGraphCall attribute), 81
group (ONNXConv attribute), 54
group (ONNXConvInteger attribute), 56
group (ONNXConvTranspose attribute), 58
group (ONNXQLinearConv attribute), 117

\section*{H}
has_onnx_node () (in module daceml.onnx), 27
hidden_size (ONNXGRU attribute), 71
hidden_size (ONNXLSTM attribute), 90
hidden_size (ONNXRNN attribute), 121
high (ONNXRandomUniform attribute), 123
high (ONNXRandomUniformLike attribute), 124
homogeneous (ONNXParameter attribute), 31
|
ignore_index (ONNXNegativeLogLikelihoodLoss attribute), 108
ignore_index (ONNXSoftmaxCrossEntropyLoss attribute), 149
imputed_value_floats (ONNXImputer attribute), 84
imputed_value_int64s (ONNXImputer attribute), 84
input_forget (ONNXLSTM attribute), 90
inputdimensions (ONNXFeatureVectorizer attribute), 67
inputs (ONNXModel attribute), 28
inputs (ONNXSchema attribute), 32
Int (ONNXAttributeType attribute), 30
intercepts (ONNXLinearClassifier attribute), 93
intercepts (ONNXLinearRegressor attribute), 94
Ints (ONNXAttributeType attribute), 30
iter_edges() (ONNXOp method), 28
iter_inputs_in_onnx_order() (ONNXOp method), 28
iter_outputs_in_onnx_order() (ONNXOp method), 29

\section*{K}
k (ONNXEyeLike attribute), 66
keepdims (ONNXArgMax attribute), 42
keepdims (ONNXArgMin attribute), 42
keepdims (ONNXReduceL1 attribute), 126
keepdims (ONNXReduceL2 attribute), 126
keepdims (ONNXReduceLogSum attribute), 127
keepdims (ONNXReduceLogSumExp attribute), 128
keepdims (ONNXReduceMax attribute), 128
keepdims (ONNXReduceMean attribute), 129
keepdims (ONNXReduceMin attribute), 129
keepdims (ONNXReduceProd attribute), 130
keepdims (ONNXReduceSum attribute), 131
keepdims (ONNXReduceSumSquare attribute), 131
kernel_params (ONNXSVMClassifier attribute), 138
kernel_params (ONNXSVMRegressor attribute), 139
kernel_shape (ONNXAveragePool attribute), 45
kernel_shape (ONNXConv attribute), 54
kernel_shape (ONNXConvInteger attribute), 56
kernel_shape (ONNXConvTranspose attribute), 58
kernel_shape (ONNXLpPool attribute), 96
kernel_shape (ONNXMaxPool attribute), 99
kernel_shape (ONNXMaxUnpool attribute), 101
kernel_shape (ONNXQLinearConv attribute), 117
kernel_type (ONNXSVMClassifier attribute), 138
kernel_type (ONNXSVMRegressor attribute), 139
keys_floats (ONNXLabelEncoder attribute), 91
keys_int64s (ONNXLabelEncoder attribute), 91
keys_strings (ONNXLabelEncoder attribute), 91

\section*{L}
lambd (ONNXShrink attribute), 145
largest (ONNXTopK attribute), 157
linear_before_reset (ONNXGRU attribute), 71
low (ONNXRandomUniform attribute), 123
low (ONNXRandomUniformLike attribute), 124

\section*{M}
make_backward_function() (in module daceml.autodiff), 23
max_gram_length (ONNXTfIdfVectorizer attribute), 154
max_skip_count (ONNXTfIdfVectorizer attribute), 154
mean (ONNXRandomNormal attribute), 122
mean (ONNXRandomNormalLike attribute), 123
min_gram_length (ONNXTfIdfVectorizer attribute), 154
mode (ONNXDepthToSpace attribute), 61
mode (ONNXMomentum attribute), 105
mode (ONNXPad attribute), 115
mode (ONNXResize attribute), 134
mode (ONNXRoiAlign attribute), 136
mode (ONNXTfIdfVectorizer attribute), 155
mode (ONNXUpsample attribute), 165
module
daceml.onnx, 27
daceml.onnx.environments.onnxruntime, 36
daceml.onnx.nodes.onnx_op, 36
daceml.onnx.op_implementations.img_o 35
daceml.onnx.op_implementations.pure_ 34
daceml.pytorch, 167
momentum (ONNXBatchNormalization attribute), 47
multi_class (ONNXLinearClassifier attribute), 93

\section*{N}
n_supports (ONNXSVMRegressor attribute), 139
n_targets (ONNXTreeEnsembleRegressor attribute), 161
name (ONNXAttribute attribute), 31
name (ONNXParameter attribute), 32
name (ONNXSchema attribute), 32
nearest_mode (ONNXResize attribute), 134
ngram_counts (ONNXTfIdfVectorizer attribute), 155
ngram_indexes (ONNXTfIdfVectorizer attribute), 155
nodes_falsenodeids (ONNXTreeEnsembleClassifier attribute), 159
nodes_falsenodeids (ONNXTreeEnsembleRegressor attribute), 161
nodes_featureids (ONNXTreeEnsembleClassifier attribute), 159
nodes_featureids (ONNXTreeEnsembleRegressor attribute), 161
nodes_hitrates (ONNXTreeEnsembleClassifier attribute), 159
nodes_hitrates (ONNXTreeEnsembleRegressor attribute), 161
nodes_missing_value_tracks_true (ONNXTreeEnsembleClassifier attribute), 159
nodes_missing_value_tracks_true (ONNXTreeEnsembleRegressor attribute), 162
nodes_modes (ONNXTreeEnsembleClassifier attribute), 159
nodes_modes (ONNXTreeEnsembleRegressor attribute), 162
nodes_nodeids (ONNXTreeEnsembleClassifier attribute), 160
nodes_nodeids (ONNXTreeEnsembleRegressor attribute), 162
nodes_treeids (ONNXTreeEnsembleClassifier attribute), 160
nodes_treeids (ONNXTreeEnsembleRegressor attribute), 162
nodes_truenodeids (ONNXTreeEnsembleClassifier attribute), 160
nodes_truenodeids (ONNXTreeEnsembleRegressor attribute), 162
nodes_values (ONNXTreeEnsembleClassifier attribute), 160
nodes_values (ONNXTreeEnsembleRegressor attribute), 162
nqrm 1 QNAXNAKnalizer attribute), 110
norm_coefficient (ONNXAdagrad attribute), 38

norm_coefficient (ONNXMomentum attribute), 105
norm_coefficient_post (ONNXAdam attribute), 40

\section*{0}
offset (ONNXScaler attribute), 140
one_class (ONNXSVMRegressor attribute), 139
onnx_representation() (in module daceml.onnx), 29
ONNXAbs (class in daceml.onnx.nodes.onnx_op), 36
ONNXAcos (class in daceml.onnx.nodes.onnx_op), 36
ONNXAcosh (class in daceml.onnx.nodes.onnx_op), 36
ONNXAdagrad (class in daceml.onnx.nodes.onnx_op), 37
ONNXAdam (class in daceml.onnx.nodes.onnx_op), 38
ONNXAdd (class in daceml.onnx.nodes.onnx_op), 40
ONNXAnd (class in daceml.onnx.nodes.onnx_op), 41
ONNXArgMax (class in daceml.onnx.nodes.onnx_op), 41

ONNXArgMin (class in daceml.onnx.nodes.onnx_op), 42 ONNXArrayFeatureExtractor (class in
daceml.onnx.nodes.onnx_op), 43
ONNXAsin (class in daceml.onnx.nodes.onnx_op), 43 ONNXAsinh (class in daceml.onnx.nodes.onnx_op), 43 ONNXAt an (class in daceml.onnx.nodes.onnx_op), 43 ONNXAt anh (class in daceml.onnx.nodes.onnx_op), 44 ONNXAttribute (class in daceml.onnx), 30 ONNXAttributeType (class in daceml.onnx), 30 ONNXAveragePool (class
daceml.onnx.nodes.onnx_op), 44
ONNXBatchNormalization (class
daceml.onnx.nodes.onnx_op), 46
ONNXBinarizer (class
daceml.onnx.nodes.onnx_op), 47
ONNXBitShift (class in daceml.onnx.nodes.onnx_op), 47
ONNXCast (class in daceml.onnx.nodes.onnx_op), 48 ONNXCategoryMapper (class in
daceml.onnx.nodes.onnx_op), 49
ONNXCeil (class in daceml.onnx.nodes.onnx_op), 49
ONNXCelu (class in daceml.onnx.nodes.onnx_op), 50
ONNXClip (class in daceml.onnx.nodes.onnx_op), 50
ONNXCompress (class in daceml.onnx.nodes.onnx_op), 51
ONNXConcat (class in daceml.onnx.nodes.onnx_op), 51 ONNXConstant (class in daceml.onnx.nodes.onnx_op), 52
ONNXConstantOfShape (class
daceml.onnx.nodes.onnx_op), 53
ONNXConv (class in daceml.onnx.nodes.onnx_op), 53
ONNXConvInteger (class
daceml.onnx.nodes.onnx_op), 55
ONNXConvTranspose (class
daceml.onnx.nodes.onnx_op), 56
ONNXCos (class in daceml.onnx.nodes.onnx_op), 59
ONNXCosh (class in daceml.onnx.nodes.onnx_op), 59
ONNXCumSum (class in daceml.onnx.nodes.onnx_op), 59
ONNXDepthToSpace (class in
daceml.onnx.nodes.onnx_op), 60
ONNXDequantizeLinear (class daceml.onnx.nodes.onnx_op), 61
ONNXDet (class in daceml.onnx.nodes.onnx_op), 61
ONNXDiv (class in daceml.onnx.nodes.onnx_op), 61
ONNXDropout (class in daceml.onnx.nodes.onnx_op), 62
ONNXDynamicQuantizeLinear (class in daceml.onnx.nodes.onnx_op), 63
ONNXEinsum (class in daceml.onnx.nodes.onnx_op), 63
ONNXElu (class in daceml.onnx.nodes.onnx_op), 64 ONNXEqual (class in daceml.onnx.nodes.onnx_op), 64 ONNXErf (class in daceml.onnx.nodes.onnx_op), 65 ONNXExp (class in daceml.onnx.nodes.onnx_op), 65 ONNXExpand (class in daceml.onnx.nodes.onnx_op), 65

ONNXEyeLike (class in daceml.onnx.nodes.onnx_op), 66
ONNXFeatureVectorizer (class in daceml.onnx.nodes.onnx_op), 67
ONNXFlatten (class in daceml.onnx.nodes.onnx_op), 67
ONNXF loor (class in daceml.onnx.nodes.onnx_op), 68
ONNXForward (class in daceml.onnx.forward_implementation_abc), 33
ONNXGather (class in daceml.onnx.nodes.onnx_op), 71
ONNXGatherElements (class in daceml.onnx.nodes.onnx_op), 72
ONNXGatherND (class in daceml.onnx.nodes.onnx_op), 73
ONNXGemm (class in daceml.onnx.nodes.onnx_op), 75
ONNXGlobalAveragePool (class in daceml.onnx.nodes.onnx_op), 76
ONNXGlobalLpPool (class in daceml.onnx.nodes.onnx_op), 76
ONNXGlobalMaxPool (class in daceml.onnx.nodes.onnx_op), 77
ONNXGradient (class in daceml.onnx.nodes.onnx_op), 77
ONNXGraphCall (class in daceml.onnx.nodes.onnx_op), 80
ONNXGreater (class in daceml.onnx.nodes.onnx_op), 81
ONNXGreaterOrEqual (class in daceml.onnx.nodes.onnx_op), 82
ONNXGRU (class in daceml.onnx.nodes.onnx_op), 68
ONNXHardmax (class in daceml.onnx.nodes.onnx_op), 83
ONNXHardSigmoid (class in daceml.onnx.nodes.onnx_op), 82
ONNXIdentity (class in daceml.onnx.nodes.onnx_op), 83
ONNXImputer (class in daceml.onnx.nodes.onnx_op), 83
ONNXInstanceNormalization (class in daceml.onnx.nodes.onnx_op), 84
ONNXIsInf (class in daceml.onnx.nodes.onnx_op), 85 ONNXIsNaN (class in daceml.onnx.nodes.onnx_op), 85
ONNXLabelEncoder (class in daceml.onnx.nodes.onnx_op), 90
ONNXLeakyRelu (class in daceml.onnx.nodes.onnx_op), 91
ONNXLess (class in daceml.onnx.nodes.onnx_op), 91
ONNXLessOrEqual (class in daceml.onnx.nodes.onnx_op), 92
ONNXLinearClassifier (class in daceml.onnx.nodes.onnx_op), 92
ONNXLinearRegressor (class in daceml.onnx.nodes.onnx_op), 93

ONNXLog (class in daceml.onnx.nodes.onnx_op), 94
ONNXLogSoftmax (class
daceml.onnx.nodes.onnx_op), 94
ONNXLpNormalization (class
daceml.onnx.nodes.onnx_op), 95
ONNXLpPool (class in daceml.onnx.nodes.onnx_op), 95
ONNXLRN (class in daceml.onnx.nodes.onnx_op), 86
ONNXLSTM (class in daceml.onnx.nodes.onnx_op), 87
ONNXMatMul (class in daceml.onnx.nodes.onnx_op), 97
ONNXMatMulInteger (class
daceml.onnx.nodes.onnx_op), 97
ONNXMax (class in daceml.onnx.nodes.onnx_op), 97
ONNXMaxPool (class in daceml.onnx.nodes.onnx_op), 98
ONNXMaxRoiPool (class
daceml.onnx.nodes.onnx_op), 100
ONNXMaxUnpool (class
daceml.onnx.nodes.onnx_op), 100
ONNXMean (class in daceml.onnx.nodes.onnx_op), 102
ONNXMeanVarianceNormalization (class in daceml.onnx.nodes.onnx_op), 102
ONNXMin (class in daceml.onnx.nodes.onnx_op), 102
ONNXMod (class in daceml.onnx.nodes.onnx_op), 103
ONNXModel (class in daceml.onnx), 27
ONNXMomentum (class in daceml.onnx.nodes.onnx_op), 104
ONNXMul (class in daceml.onnx.nodes.onnx_op), 105
ONNXMultinomial (class in
daceml.onnx.nodes.onnx_op), 106
ONNXNeg (class in daceml.onnx.nodes.onnx_op), 106
ONNXNegativeLogLikelihoodLoss (class in
daceml.onnx.nodes.onnx_op), 107
ONNXNonMaxSuppression (class
daceml.onnx.nodes.onnx_op), 108
ONNXNonZero (class in daceml.onnx.nodes.onnx_op), 110
ONNXNormalizer (class in
daceml.onnx.nodes.onnx_op), 110
ONNXNot (class in daceml.onnx.nodes.onnx_op), 110
ONNXOneHot (class in daceml.onnx.nodes.onnx_op), 111
ONNXOneHotEncoder (class
daceml.onnx.nodes.onnx_op), 112
ONNXOp (class in daceml.onnx.nodes.onnx_op), 28
ONNXOr (class in daceml.onnx.nodes.onnx_op), 113
ONNXPad (class in daceml.onnx.nodes.onnx_op), 113
ONNXP arameter (class in daceml.onnx), 31
ONNXParameterType (class in daceml.onnx), 29
ONNXP ow (class in daceml.onnx.nodes.onnx_op), 115
ONNXPRelu (class in daceml.onnx.nodes.onnx_op), 113
ONNXQLinearConv (class in
daceml.onnx.nodes.onnx_op), 115
ONNXQLinearMatMul (class
daceml.onnx.nodes.onnx_op), 117

ONNXQuantizeLinear (class in daceml.onnx.nodes.onnx_op), 118
(class in
ONNXRandomNormal (class in
ONNXRandomNormalLike (class in daceml.onnx.nodes.onnx_op), 122
ONNXRandomUniform (class in daceml.onnx.nodes.onnx_op), 123
ONNXRandomUniformLike (class in daceml.onnx.nodes.onnx_op), 123
ONNXRange (class in daceml.onnx.nodes.onnx_op), 124
ONNXReciprocal (class in daceml.onnx.nodes.onnx_op), 125
ONNXReduceL1 (class in daceml.onnx.nodes.onnx_op), 125
ONNXReduceL2 (class in daceml.onnx.nodes.onnx_op), 126
ONNXReduceLogSum (class in daceml.onnx.nodes.onnx_op), 126
ONNXReduceLogSumExp (class in daceml.onnx.nodes.onn_op), 127
(class daceml.onnx.nodes.onnx_op), 128
(class daceml.onnx.nodes.onnx_op), 128 in
ONNXReduceMin (class
in daceml.onnx.nodes.onnx_op), 129
ONNXReduceProd (class
in daceml.onnx.nodes.onnx_op), 129
ONNXReduceSum (class
in daceml.onnx.nodes.onnx_op), 130
ONNXReduceSumSquare (class in daceml.onnx.nodes.onnx_op), 131
ONNXRelu (class in daceml.onnx.nodes.onnx_op), 131
ONNXReshape (class in daceml.onnx.nodes.onnx_op), 132
ONNXResize (class in daceml.onnx.nodes.onnx_op), 132
ONNXReverseSequence (class in daceml.onnx.nodes.onnx_op), 134
ONNXRNN (class in daceml.onnx.nodes.onnx_op), 119
ONNXRoiAlign (class in daceml.onnx.nodes.onnx_op), 135
ONNXRound (class in daceml.onnx.nodes.onnx_op), 136
ONNXRuntime
(class
in daceml.onnx.environments.onnxruntime), 36
ONNXRuntimeCUDA (class in daceml.onnx.environments.onnxruntime), 36
ONNXScaler (class in daceml.onnx.nodes.onnx_op), 139
in ONNXScatter (class in daceml.onnx.nodes.onnx_op), 140

ONNXScatterElements
(class
daceml.onnx.nodes.onnx_op), 141
ONNXScatterND
(class
daceml.onnx.nodes.onnx_op), 142
ONNXS chema (class in daceml.onnx), 32
ONNXSelu (class in daceml.onnx.nodes.onnx_op), 144
ONNXShape (class in daceml.onnx.nodes.onnx_op), 144
ONNXShrink (class in daceml.onnx.nodes.onnx_op), 144
ONNXSigmoid (class in daceml.onnx.nodes.onnx_op), 145
ONNXSign (class in daceml.onnx.nodes.onnx_op), 145
ONNXS in (class in daceml.onnx.nodes.onnx_op), 146
ONNXS inh (class in daceml.onnx.nodes.onnx_op), 146
ONNXS ize (class in daceml.onnx.nodes.onnx_op), 146
ONNXSlice (class in daceml.onnx.nodes.onnx_op), 146
ONNXSoftmax (class in daceml.onnx.nodes.onnx_op), 147
ONNXSoftmaxCrossEntropyLoss (class in daceml.onnx.nodes.onnx_op), 148
ONNXSoftplus (class in daceml.onnx.nodes.onnx_op), 149
ONNXSoftsign (class in daceml.onnx.nodes.onnx_op), 150
ONNXSpaceToDepth (class in daceml.onnx.nodes.onnx_op), 150
ONNXSplit (class in daceml.onnx.nodes.onnx_op), 150
ONNXSqrt (class in daceml.onnx.nodes.onnx_op), 151
ONNXSqueeze (class in daceml.onnx.nodes.onnx_op), 151
ONNXSub (class in daceml.onnx.nodes.onnx_op), 152
ONNXSum (class in daceml.onnx.nodes.onnx_op), 152
ONNXSVMClassifier (class
daceml.onnx.nodes.onnx_op), 137
ONNXSVMRegressor (class daceml.onnx.nodes.onnx_op), 138
ONNXTan (class in daceml.onnx.nodes.onnx_op), 152
ONNXTanh (class in daceml.onnx.nodes.onnx_op), 153
ONNXTfIdfVectorizer (class in daceml.onnx.nodes.onnx_op), 153
ONNXThresholdedRelu (class daceml.onnx.nodes.onnx_op), 155
ONNXTile (class in daceml.onnx.nodes.onnx_op), 155
ONNXTopK (class in daceml.onnx.nodes.onnx_op), 156
ONNXTranspose (class daceml.onnx.nodes.onnx_op), 157
ONNXTreeEnsembleClassifier (class daceml.onnx.nodes.onnx_op), 157
ONNXTreeEnsembleRegressor (class daceml.onnx.nodes.onnx_op), 160
ONNXTypeConstraint (class in daceml.onnx), 31
ONNXUnique (class in daceml.onnx.nodes.onnx_op), 162
ONNXUnsqueeze (class in

ONNXWhere (class in daceml.onnx.nodes.onnx_op), 165 ONNXXor (class in daceml.onnx.nodes.onnx_op), 165
op_implementation () (in module daceml.onnx.op_implementations.utils), 33
Optional (ONNXParameterType attribute), 29
output_height (ONNXRoiAlign attribute), 136
output_padding (ONNXConvTranspose attribute), 58
output_shape (ONNXConvTranspose attribute), 58
output_width (ONNXRoiAlign attribute), 136
outputs (ONNXModel attribute), 28
outputs (ONNXSchema attribute), 32

\section*{P}
p (ONNXGlobalLpPool attribute), 77
p (ONNXLpNormalization attribute), 95
p (ONNXLpPool attribute), 96
pads (ONNXAveragePool attribute), 46
pads (ONNXConv attribute), 55
pads (ONNXConvInteger attribute), 56
pads (ONNXConvTranspose attribute), 58
pads (ONNXLpPool attribute), 96
pads (ONNXMaxPool attribute), 99
pads (ONNXMaxUnpool attribute), 101
pads (ONNXQLinearConv attribute), 117
param_type (ONNXParameter attribute), 32
perm (ONNXTranspose attribute), 157
pool_int64s (ONNXTfIdfVectorizer attribute), 155
pool_strings (ONNXTfIdfVectorizer attribute), 155
pooled_shape (ONNXMaxRoiPool attribute), 100
post_autodiff_hooks (DaceModule attribute), 168
post_compile_hooks (DaceModule attribute), 168
post_onnx_hooks (DaceModule attribute), 168
post_transform (ONNXLinearClassifier attribute), 93
post_transform (ONNXLinearRegressor attribute), 94
post_transform (ONNXSVMClassifier attribute), 138
post_transform (ONNXSVMRegressor attribute), 139
post_transform (ONNXTreeEnsembleClassifier attribute), 160
post_transform (ONNXTreeEnsembleRegressor attribute), 162
prepend_post_autodiff_hook() (DaceModule method), 168
prepend_post_compile_hook() (DaceModule method), 168
```

prepend_post_onnx_hook() (DaceModule 35
method),168 PureSigmoid
daceml.onnx.op_implementations.pure_implementations),
prob_a (ONNXSVMClassifier attribute),138 (ONNXVMClassifier attribute),138 (ONN
PureBatchNormalization (class in PureSoftmax in
daceml.onnx.op_implementations.img_op_implementations)daceml.onnx.op_implementations.pure_implementations),
3 5 ~ 3 5

```

```

3 4 ~ 3 5
PureConv2D (class in PureSum(class in daceml.onnx.op_implementations.pure_implementation.
daceml.onnx.op_implementations.img_op_implementations),35
3 5 ~ P u r e T r a n s p o s e ~ ( c l a s s ~ i n ~
PureEinsum (class in daceml.onnx.op_implementations.pure_implementations),
daceml.onnx.op_implementations.pure_implementations), 35
34
PureErf (class in daceml.onnx.op_implementations.pure_隹plementations),
3 4 ~ r e d u c t i o n ~ ( O N N X N e g a t i v e L o g L i k e l i h o o d L o s s ~ a t -
PureFlatten (class in tribute),108
daceml.onnx.op_implementations.pure_implementatimad,tion (ONNXSoftmaxCrossEntropyLoss at-
3 4 tribute), 149

```

```

        3 4 8 4
    PureLog (class in daceml.onnx.op_implementations.pure_imqbenaetactiond)_ue_int 64 (ONNXImputer attribute),
34
84
PureLogSoftmax (class in required (ONNXAttribute attribute), 31
daceml.onnx.op_implementations.pure_implementatiqusi),red_grad_names (BackwardResult attribute),
34 25
PureMatMul (class in reset_sdfg()(DaceModule method),168
daceml.onnx.op_implementations.pure_implementatioms),se (ONNXCumSum attribute), }6
3 4 ~ r h o ~ ( O N N X S V M C l a s s i f i e r ~ a t t r i b u t e ) , ~ 1 3 8 ~
PureMaxPool2D (class in rho(ONNXSVMRegressor attribute),139
daceml.onnx.op_implementations.img_op_implementations),
3 5 ~ S
PurePow (class in daceml.onnx.op_implementations.pure_imquepzentationg)(ONNXMultinomial attribute), 106
34
PureReciprocal (class in scale(ONNXRandomNormal attribute),122
daceml.onnx.op_implementations.pure_implementgtignse,(ONNXRandomNormalLike attribute), }12
34
scale (ONNXScaler attribute),140
PureReduceMax (class in schema (ONNXOp attribute), 29
daceml.onnx.op_implementations.pure_implementgtiqns)\ONNXModel attribute), 28
34
PureReduceMean (class in seed (ONNXMultinomial attribute), 106
daceml.onnx.op_implementations.pure_implementgtigns{\ONNXRandomNormal attribute), 122
3 4 ~ s e e d ~ ( O N N X R a n d o m N o r m a l L i k e ~ a t t r i b u t e ) , ~ 1 2 3 ~
PureReduceMin (class in seed (ONNXRandomUniform attribute), 123
daceml.onnx.op_implementations.pure_implementgtighs}(ONNXRandomUniformLike attribute), 124
34
PureReduceSum (class in select_last_index (ONNXArgMin attribute), 42
daceml.onnx.op_implementations.pure_implementgłig\se,(ONNXRandomNormal attribute), }12
3 5 \mp@code { s h a p e ~ ( O N N X R a n d o m U n i f o r m ~ a t t r i b u t e ) , ~ } 1 2 3
PureRelu (class in daceml.onnx.op_implementations.puresimplementationS)n (ONNXSchema attribute), 33
35
PureR (class Single (ONNXParameterType attribute), 30
PureReshape (class in size (ONNXLRN attribute),87
daceml.onnx.op_implementations.pure_implementgtionsedd (ONNXTopK attribute),157

```
```

sorted (ONNXUnique attribute), 164
spatial_scale(ONNXMaxRoiPool attribute),100
spatial_scale (ONNXRoiAlign attribute),136
split (ONNXSplit attribute), 151
state (ONNXModel attribute), 28
storage_order (ONNXMaxPool attribute),100
strides (ONNXAveragePool attribute),46
strides(ONNXConv attribute),55
strides (ONNXConvInteger attribute), 56
strides (ONNXConvTranspose attribute),58
strides(ONNXLpPool attribute), 96
strides (ONNXMaxPool attribute), 100
strides(ONNXMaxUnpool attribute),102
strides(ONNXQLinearConv attribute),117
String(ONNXAttributeType attribute), 30
Strings (ONNXAttributeType attribute), 30
support_vectors (ONNXSVMClassifier attribute),
1 3 8
support_vectors (ONNXSVMRegressor attribute),
1 3 9

```
T
target_ids (ONNXTreeEnsembleRegressor at-
 tribute), 162
target_nodeids (ONNXTreeEnsembleRegressor at-
 tribute), 162
target_treeids (ONNXTreeEnsembleRegressor at-
 tribute), 162
target_weights (ONNXTreeEnsembleRegressor at-
 tribute), 162
targets (ONNXLinearRegressor attribute), 94
Tensor (ONNXAttributeType attribute), 30
threshold (ONNXBinarizer attribute), 47
time_axis (ONNXReverseSequence attribute), 135
to (ONNXCast attribute), 48
to_json() (ONNXAttribute method), 31
to_json() (ONNXParameter method), 32
to_json() (ONNXSchema method), 33
to_json() (ONNXTypeConstraint method), 31
training (DaceModule attribute), 168
transA (ONNXGemm attribute), 76
transB (ONNXGemm attribute), 76
type_constraints (ONNXSchema attribute), 33
type_str (ONNXParameter attribute), 32
type_str (ONNXTypeConstraint attribute), 31
types (ONNXTypeConstraint attribute), 31

\section*{U}

Unsupported (ONNXAttributeType attribute), 30

\section*{V}
validate() (ONNXOp method), 29
value (ONNXConstant attribute), 52
value (ONNXConstantOfShape attribute), 53
value_float (ONNXConstant attribute), 52
value_floats (ONNXConstant attribute), 52
value_int (ONNXConstant attribute), 52
value_ints (ONNXConstant attribute), 53
value_string (ONNXConstant attribute), 53
value_strings (ONNXConstant attribute), 53
values_floats (ONNXLabelEncoder attribute), 91
values_int64s (ONNXLabelEncoder attribute), 91
values_strings (ONNXLabelEncoder attribute), 91
Variadic (ONNXParameterType attribute), 30
vectors_per_class (ONNXSVMClassifier attribute), 138

\section*{W}
weights (ONNXModel attribute), 28
weights (ONNXTfIdfVectorizer attribute), 155

\section*{X}
xs (ONNXGradient attribute), 80

\section*{Y}
y (ONNXGradient attribute), 80

\section*{Z}
zeros (ONNXOneHotEncoder attribute), 113
zs (ONNXGradient attribute), 80```

[^0]: ${ }^{1}$ The patched version will be required until \#4453 has been merged and released.

[^1]: ${ }^{1}$ Diganta Misra. Mish: A self regularized non-monotonic activation function. In 31st British Machine Vision Conference 2020, BMVC 2020, Virtual Event, UK, September 7-10, 2020. BMVA Press, 2020.
 ${ }^{2}$ Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and accuracy of object detection. CoRR, abs/2004.10934, 2020.

